Suppr超能文献

基于机器学习的拓扑结构光谱指标。

Machine-Learning Spectral Indicators of Topology.

机构信息

Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439, USA.

Quantum Measurement Group, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

出版信息

Adv Mater. 2022 Dec;34(49):e2204113. doi: 10.1002/adma.202204113. Epub 2022 Oct 31.

Abstract

Topological materials discovery has emerged as an important frontier in condensed matter physics. While theoretical classification frameworks have been used to identify thousands of candidate topological materials, experimental determination of materials' topology often poses significant technical challenges. X-ray absorption spectroscopy (XAS) is a widely used materials characterization technique sensitive to atoms' local symmetry and chemical bonding, which are intimately linked to band topology by the theory of topological quantum chemistry (TQC). Moreover, as a local structural probe, XAS is known to have high quantitative agreement between experiment and calculation, suggesting that insights from computational spectra can effectively inform experiments. In this work, computed X-ray absorption near-edge structure (XANES) spectra of more than 10 000 inorganic materials to train a neural network (NN) classifier that predicts topological class directly from XANES signatures, achieving F scores of 89% and 93% for topological and trivial classes, respectively is leveraged. Given the simplicity of the XAS setup and its compatibility with multimodal sample environments, the proposed machine-learning-augmented XAS topological indicator has the potential to discover broader categories of topological materials, such as non-cleavable compounds and amorphous materials, and may further inform field-driven phenomena in situ, such as magnetic field-driven topological phase transitions.

摘要

拓扑材料的发现已成为凝聚态物理的一个重要前沿领域。虽然理论分类框架已被用于识别数千种候选拓扑材料,但材料拓扑的实验确定通常存在重大技术挑战。X 射线吸收光谱(XAS)是一种广泛使用的材料特性分析技术,对原子的局部对称性和化学结合非常敏感,而拓扑量子化学(TQC)理论将其与能带拓扑紧密联系起来。此外,作为一种局部结构探针,XAS 以实验和计算之间具有高度定量一致性而闻名,这表明计算光谱的见解可以有效地为实验提供信息。在这项工作中,我们利用超过 10000 种无机材料的计算 X 射线近边结构(XANES)谱来训练神经网络(NN)分类器,该分类器可以直接从 XANES 特征预测拓扑类别,拓扑和非拓扑类别的 F 分数分别达到 89%和 93%。鉴于 XAS 设置的简单性及其与多模态样品环境的兼容性,提出的机器学习增强的 XAS 拓扑指标有可能发现更广泛类别的拓扑材料,例如不可裂解的化合物和非晶材料,并进一步原位告知现场驱动的现象,例如磁场驱动的拓扑相变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验