Department of General Surgery, Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors and Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China.
Shenzhen University General Hospital-Dehua Hospital Joint Research Center on Precision Medicine, Dehua Hospital, Dehua, Fujian 362500, China.
Biochem Soc Trans. 2022 Oct 31;50(5):1471-1480. doi: 10.1042/BST20220729.
DNA replication forks are frequently forced into stalling by persistent DNA aberrations generated from endogenous or exogenous insults. Stalled replication forks are catastrophic for genome integrity and cell survival if not immediately stabilized. The ataxia-telangiectasia and RAD3-related kinase (ATR)-CLASPIN-checkpoint kinase 1 (CHK1) signaling cascade is a pivotal mechanism that initiates cell-cycle checkpoints and stabilizes stalled replication forks, assuring the faithful duplication of genomic information before entry into mitosis. The timely recovery of checkpoints after stressors are resolved is also crucial for normal cell proliferation. The precise activation and inactivation of ATR-CHK1 signaling are usually efficiently regulated by turnover and the cellular re-localization of the adaptor protein CLASPIN. The ubiquitination-proteasome-mediated degradation of CLASPIN, driven by APC/CCDH1 and SCFβTrCP, results in a cell-cycle-dependent fluctuation pattern of CLASPIN levels, with peak levels seen in S/G2 phase when it functions in the DNA replisome or as an adaptor protein in ATR-CHK1 signaling under replication stress. Deubiquitination mediated by a series of ubiquitin-specific protease family proteins releases CLASPIN from proteasome-dependent destruction and activates the ATR-CHK1 checkpoint to overcome replication stress. Moreover, the non-proteolytic ubiquitination of CLASPIN also affects CHK1 activation by regulating CLASPIN localization. In this review, we discuss the functions of CLASPIN ubiquitination with specific linkage types in the regulation of the ATR-CHK1 signaling pathway. Research in this area is progressing at pace and provides promising chemotherapeutic targets.
DNA 复制叉经常因内源性或外源性损伤产生的持续 DNA 异常而被迫停滞。如果不能立即稳定,停滞的复制叉对基因组完整性和细胞存活是灾难性的。共济失调毛细血管扩张症和 RAD3 相关激酶(ATR)-衔接蛋白检查点激酶 1(CHK1)信号级联是启动细胞周期检查点并稳定停滞复制叉的关键机制,确保在进入有丝分裂之前准确复制基因组信息。在应激源消除后及时恢复检查点对于正常细胞增殖也至关重要。ATR-CHK1 信号的精确激活和失活通常通过衔接蛋白 CLASPIN 的周转和细胞重新定位来有效调节。由 APC/CCDH1 和 SCFβTrCP 驱动的 CLASPIN 的泛素蛋白酶体介导的降解导致 CLASPIN 水平呈细胞周期依赖性波动模式,在 S/G2 期时达到峰值,此时它在 DNA 复制体中发挥作用,或在复制应激下作为 ATR-CHK1 信号的衔接蛋白发挥作用。一系列泛素特异性蛋白酶家族蛋白介导的去泛素化作用将 CLASPIN 从蛋白酶体依赖性破坏中释放出来,并激活 ATR-CHK1 检查点以克服复制应激。此外,CLASPIN 的非蛋白水解泛素化也通过调节 CLASPIN 定位来影响 CHK1 的激活。在这篇综述中,我们讨论了 CLASPIN 泛素化的功能,特别是特定连接类型在调节 ATR-CHK1 信号通路中的作用。该领域的研究进展迅速,为提供有前途的化疗靶点提供了依据。