文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于量化f波频率趋势中呼吸变化的子空间投影方法。

A subspace projection approach to quantify respiratory variations in the f-wave frequency trend.

作者信息

Abdollahpur Mostafa, Engström Gunnar, Platonov Pyotr G, Sandberg Frida

机构信息

Department of Biomedical Engineering, Lund University, Lund, Sweden.

Department of Clinical Sciences, Cardiovascular Research-Epidemiology, Malmö, Sweden.

出版信息

Front Physiol. 2022 Sep 19;13:976925. doi: 10.3389/fphys.2022.976925. eCollection 2022.


DOI:10.3389/fphys.2022.976925
PMID:36200057
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9527347/
Abstract

The autonomic nervous system (ANS) is known as a potent modulator of the initiation and perpetuation of atrial fibrillation (AF), hence information about ANS activity during AF may improve treatment strategy. Respiratory induced ANS variation in the f-waves of the ECG may provide such information. This paper proposes a novel approach for improved estimation of such respiratory induced variations and investigates the impact of deep breathing on the f-wave frequency in AF patients. A harmonic model is fitted to the f-wave signal to estimate a high-resolution f-wave frequency trend, and an orthogonal subspace projection approach is employed to quantify variations in the frequency trend that are linearly related to respiration using an ECG-derived respiration signal. The performance of the proposed approach is evaluated and compared to that of a previously proposed bandpass filtering approach using simulated f-wave signals. Further, the proposed approach is applied to analyze ECG data recorded for 5 min during baseline and 1 min deep breathing from 28 AF patients from the Swedish cardiopulmonary bioimage study (SCAPIS). The simulation results show that the estimates of respiratory variations obtained using the proposed approach are more accurate than estimates obtained using the previous approach. Results from the analysis of SCAPIS data show no significant differences between baseline and deep breathing in heart rate (75.5 ± 22.9 vs. 74 ± 22.3) bpm, atrial fibrillation rate (6.93 ± 1.18 vs. 6.94 ± 0.66) Hz and respiratory f-wave frequency variations (0.130 ± 0.042 vs. 0.130 ± 0.034) Hz. However, individual variations are large with changes in heart rate and atrial fibrillatory rate in response to deep breathing ranging from -9% to +5% and -8% to +6%, respectively and there is a weak correlation between changes in heart rate and changes in atrial fibrillatory rate ( = 0.38, < 0.03). Respiratory induced f-wave frequency variations were observed at baseline and during deep breathing. No significant changes in the magnitude of these variations in response to deep breathing was observed in the present study population.

摘要

自主神经系统(ANS)是已知的心房颤动(AF)起始和持续的强效调节因子,因此关于AF期间ANS活动的信息可能会改善治疗策略。心电图f波中呼吸诱导的ANS变化可能提供此类信息。本文提出了一种改进此类呼吸诱导变化估计的新方法,并研究了深呼吸对AF患者f波频率的影响。将谐波模型拟合到f波信号以估计高分辨率的f波频率趋势,并采用正交子空间投影方法,使用心电图衍生的呼吸信号来量化与呼吸线性相关的频率趋势变化。使用模拟f波信号评估所提出方法的性能,并与先前提出的带通滤波方法进行比较。此外,将所提出的方法应用于分析瑞典心肺生物图像研究(SCAPIS)中28名AF患者在基线期记录5分钟以及深呼吸1分钟期间的心电图数据。模拟结果表明,使用所提出方法获得的呼吸变化估计比使用先前方法获得的估计更准确。对SCAPIS数据的分析结果表明,心率(75.5±22.9对74±22.3)bpm、心房颤动率(6.93±1.18对6.94±0.66)Hz和呼吸f波频率变化(0.130±0.042对0.130±0.034)Hz在基线期和深呼吸之间无显著差异。然而,个体差异很大,深呼吸时心率和心房颤动率的变化分别为-9%至+5%和-8%至+6%,且心率变化与心房颤动率变化之间存在弱相关性(r = 0.38,P < 0.03)。在基线期和深呼吸期间均观察到呼吸诱导的f波频率变化。在本研究人群中,未观察到这些变化幅度在深呼吸时的显著变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1272/9527347/a9f4bb7ee227/fphys-13-976925-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1272/9527347/afb0d80f4552/fphys-13-976925-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1272/9527347/4fb8a7f24591/fphys-13-976925-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1272/9527347/1866f0d62077/fphys-13-976925-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1272/9527347/edbdea2e41ac/fphys-13-976925-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1272/9527347/0a5dea35f7df/fphys-13-976925-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1272/9527347/b36fb01980a1/fphys-13-976925-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1272/9527347/cd10910bcaa2/fphys-13-976925-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1272/9527347/08ab3b266612/fphys-13-976925-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1272/9527347/c8b07665ec86/fphys-13-976925-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1272/9527347/a9f4bb7ee227/fphys-13-976925-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1272/9527347/afb0d80f4552/fphys-13-976925-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1272/9527347/4fb8a7f24591/fphys-13-976925-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1272/9527347/1866f0d62077/fphys-13-976925-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1272/9527347/edbdea2e41ac/fphys-13-976925-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1272/9527347/0a5dea35f7df/fphys-13-976925-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1272/9527347/b36fb01980a1/fphys-13-976925-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1272/9527347/cd10910bcaa2/fphys-13-976925-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1272/9527347/08ab3b266612/fphys-13-976925-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1272/9527347/c8b07665ec86/fphys-13-976925-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1272/9527347/a9f4bb7ee227/fphys-13-976925-g010.jpg

相似文献

[1]
A subspace projection approach to quantify respiratory variations in the f-wave frequency trend.

Front Physiol. 2022-9-19

[2]
Respiratory Induced Modulation in f-Wave Characteristics During Atrial Fibrillation.

Front Physiol. 2021-4-8

[3]
ECG-Derived Respiratory Rate in Atrial Fibrillation.

IEEE Trans Biomed Eng. 2020-3

[4]
ECG-based estimation of respiration-induced autonomic modulation of AV nodal conduction during atrial fibrillation.

Front Physiol. 2024-5-8

[5]
The frequency of atrial fibrillatory waves is modulated by the spatiotemporal pattern of acetylcholine release: a 3D computational study.

Front Physiol. 2024-1-3

[6]
Non-invasive assessment of fibrillatory activity in patients with paroxysmal and persistent atrial fibrillation using the Holter ECG.

Cardiovasc Res. 1999-10

[7]
Model-Based Assessment of f-Wave Signal Quality in Patients With Atrial Fibrillation.

IEEE Trans Biomed Eng. 2018-2-28

[8]
A comparative study of the performance of methods for f-wave extraction.

Physiol Meas. 2022-10-26

[9]
Dynamic time warping applied to estimate atrial fibrillation temporal organization from the surface electrocardiogram.

Med Eng Phys. 2013-4-6

[10]
Short-time regularity assessment of fibrillatory waves from the surface ECG in atrial fibrillation.

Physiol Meas. 2012-5-4

引用本文的文献

[1]
ECG-based beat-to-beat assessment of AV node conduction properties during AF.

Front Physiol. 2025-8-1

[2]
Tilt-induced changes in f-wave characteristics during atrial fibrillation: an experimental and computational investigation.

Front Physiol. 2025-6-13

[3]
ECG-based estimation of respiration-induced autonomic modulation of AV nodal conduction during atrial fibrillation.

Front Physiol. 2024-5-8

[4]
The frequency of atrial fibrillatory waves is modulated by the spatiotemporal pattern of acetylcholine release: a 3D computational study.

Front Physiol. 2024-1-3

本文引用的文献

[1]
Cardiovagal Function Measured by the Deep Breathing Test: Relationships With Coronary Atherosclerosis.

J Am Heart Assoc. 2022-4-5

[2]
Impact of low-level electromagnetic fields on the inducibility of atrial fibrillation in the electrophysiology laboratory.

Heart Rhythm O2. 2021-4-30

[3]
Respiratory Induced Modulation in f-Wave Characteristics During Atrial Fibrillation.

Front Physiol. 2021-4-8

[4]
Modulation of the autonomic nervous system through mind and body practices as a treatment for atrial fibrillation.

Rev Cardiovasc Med. 2019-9-30

[5]
ECG-Derived Respiratory Rate in Atrial Fibrillation.

IEEE Trans Biomed Eng. 2020-3

[6]
Unconstrained Estimation of HRV Indices After Removing Respiratory Influences From Heart Rate.

IEEE J Biomed Health Inform. 2018-12-3

[7]
Role of autonomic nervous system in atrial fibrillation.

Int J Cardiol. 2018-11-18

[8]
Model-Based Assessment of f-Wave Signal Quality in Patients With Atrial Fibrillation.

IEEE Trans Biomed Eng. 2018-2-28

[9]
Impacts of Renal Sympathetic Activation on Atrial Fibrillation: The Potential Role of the Autonomic Cross Talk Between Kidney and Heart.

J Am Heart Assoc. 2017-3-2

[10]
Autonomic influence on atrial fibrillatory process: head-up and head-down tilting.

Ann Noninvasive Electrocardiol. 2017-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索