Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK.
Brain. 2023 Apr 19;146(4):1523-1541. doi: 10.1093/brain/awac365.
Myoclonus dystonia is a childhood-onset hyperkinetic movement disorder with a combined motor and psychiatric phenotype. It represents one of the few autosomal dominant inherited dystonic disorders and is caused by mutations in the ε-sarcoglycan (SGCE) gene. Work to date suggests that dystonia is caused by disruption of neuronal networks, principally basal ganglia-cerebello-thalamo-cortical circuits. Investigation of cortical involvement has primarily focused on disruption to interneuron inhibitory activity, rather than the excitatory activity of cortical pyramidal neurons. Here, we have sought to examine excitatory cortical glutamatergic activity using two approaches: the CRISPR/Cas9 editing of a human embryonic cell line, generating an SGCE compound heterozygous mutation, and three patient-derived induced pluripotent stem cell lines, each gene edited to generate matched wild-type SGCE control lines. Differentiation towards a cortical neuronal phenotype demonstrated no significant differences in either early- (PAX6, FOXG1) or late-stage (CTIP2, TBR1) neurodevelopmental markers. However, functional characterization using Ca2+ imaging and microelectrode array approaches identified an increase in network activity, while single-cell patch clamp studies found a greater propensity towards action potential generation with larger amplitudes and shorter half-widths associated with SGCE mutations. Bulk RNA sequencing analysis identified gene ontological enrichment for 'neuron projection development', 'synaptic signalling' and 'synaptic transmission'. Examination of dendritic morphology found SGCE mutations to be associated with a significantly higher number of branches and longer branch lengths, together with longer ion-channel dense axon initial segments, particularly towards the latter stages of differentiation (Days 80 and 100). Gene expression and protein quantification of key synaptic proteins (synaptophysin, synapsin and PSD95), AMPA and NMDA receptor subunits found no significant differences between the SGCE mutation and matched wild-type lines. By contrast, significant changes to synaptic adhesion molecule expression were identified, namely higher presynaptic neurexin-1 and lower postsynaptic neuroligin-4 levels in the SGCE mutation carrying lines. Our study demonstrates an increased intrinsic excitability of cortical glutamatergic neuronal cells in the context of SGCE mutations, coupled with a more complex neurite morphology and disruption to synaptic adhesion molecules. These changes potentially represent key components to the development of the hyperkinetic clinical phenotype observed in myoclonus dystonia, as well a central feature to the wider spectrum of dystonic disorders, potentially providing targets for future therapeutic development.
肌阵挛性肌张力障碍是一种儿童期起病的运动障碍,具有运动和精神症状的混合表型。它是少数几种常染色体显性遗传性肌张力障碍之一,由 ε- 横纹肌聚糖(SGCE)基因突变引起。迄今为止的研究表明,肌张力障碍是由神经元网络的破坏引起的,主要是基底节-小脑-丘脑-皮质回路。皮质受累的研究主要集中在抑制性中间神经元活性的破坏上,而不是皮质锥体神经元的兴奋性活动。在这里,我们试图使用两种方法来检查兴奋性皮质谷氨酸能活性:通过 CRISPR/Cas9 编辑人类胚胎细胞系,产生 SGCE 复合杂合突变,以及三个患者来源的诱导多能干细胞系,每个基因编辑产生匹配的野生型 SGCE 对照系。向皮质神经元表型分化显示,早期(PAX6、FOXG1)或晚期(CTIP2、TBR1)神经发育标志物均无显著差异。然而,使用 Ca2+ 成像和微电极阵列方法进行的功能表征发现网络活动增加,而单细胞膜片钳研究发现,与 SGCE 突变相关的动作电位产生倾向更大,幅度更大,半宽度更短。批量 RNA 测序分析确定了与神经元投射发育、突触信号和突触传递相关的基因本体论富集。树突形态学检查发现,SGCE 突变与更多的分支和更长的分支长度相关,以及更长的离子通道密集的轴突起始段,特别是在分化的后期(第 80 天和第 100 天)。关键突触蛋白(突触小泡蛋白、突触素和 PSD95)、AMPA 和 NMDA 受体亚基的基因表达和蛋白定量在 SGCE 突变和匹配的野生型系之间没有发现显著差异。相比之下,发现突触黏附分子的表达有显著变化,即在携带 SGCE 突变的系中,突触前神经连接蛋白-1 水平升高,突触后神经黏连蛋白-4 水平降低。我们的研究表明,在 SGCE 突变的情况下,皮质谷氨酸能神经元细胞的固有兴奋性增加,同时伴有更复杂的神经突形态和突触黏附分子的破坏。这些变化可能是肌阵挛性肌张力障碍中观察到的运动障碍临床表型发展的关键组成部分,也是更广泛的肌张力障碍障碍的一个核心特征,可能为未来的治疗开发提供靶点。
Zhonghua Er Ke Za Zhi. 2020-2-2
Neurosci Lett. 2019-6-11
Dev Med Child Neurol. 2025-6
J Neurol Neurosurg Psychiatry. 2021-2-9
Mov Disord. 2020-7