School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
Cell Oncol (Dordr). 2022 Dec;45(6):1347-1361. doi: 10.1007/s13402-022-00724-2. Epub 2022 Oct 7.
The adaptive immune responses induced by radiotherapy has been demonstrated to largely rely on STING-dependent type I interferons (IFNs) production. However, irradiated tumor cells often fail to induce dendritic cells (DCs) to produce type I IFNs. Hence, we aim to uncover the limitation of STING-mediated innate immune sensing following radiation, and identify efficient reagents capable to rescue the failure of type I IFNs induction for facilitating radiotherapy.
A targeted cell-based phenotypic screening was performed to search for active molecules that could elevate the production of type I IFNs. USP14 knockout or inhibition was assayed for IFN production and the activation of STING signaling in vitro. The mechanisms of USP14 were investigated by western blot and co-immunoprecipitation in vitro. Additionally, combinational treatments with PT33 and radiation in vivo and in vitro models were performed to evaluate type I IFNs responses to radiation.
PT33 was identified as an enhancer of STING agonist elicited type I IFNs production to generate an elevated and durable STING activation profile in vitro. Mechanistically, USP14 inhibition or deletion impairs the deubiquitylation of K63-linked IRF3. Furthermore, blockade of USP14 with PT33 enhances DC sensing of irradiated-tumor cells in vitro, and synergizes with radiation to promote systemic antitumor immunity in vivo.
Our findings reveal that USP14 is one of the major IFN production suppressors and impairs the activation of IRF3 by removing the K63-linked ubiquitination of IRF3. Therefore, blockage of USP14 results in the gain of STING signaling activation and radiation-induced adaptive immune responses.
放射治疗所诱导的适应性免疫反应在很大程度上依赖于 STING 依赖性 I 型干扰素(IFNs)的产生。然而,放射后的肿瘤细胞往往不能诱导树突状细胞(DCs)产生 I 型 IFNs。因此,我们旨在揭示放射后 STING 介导的先天免疫感应的局限性,并确定有效的试剂来挽救 I 型 IFNs 诱导失败,以促进放射治疗。
进行了靶向细胞表型筛选,以寻找能够提高 I 型 IFNs 产生的活性分子。在体外测定 USP14 敲除或抑制对 IFN 产生和 STING 信号转导的激活作用。通过体外 Western blot 和免疫共沉淀研究 USP14 的机制。此外,还在体内和体外模型中进行了 PT33 与放射联合治疗,以评估 I 型 IFNs 对放射的反应。
PT33 被鉴定为 STING 激动剂诱导的 I 型 IFNs 产生的增强剂,可在体外产生升高和持久的 STING 激活谱。在机制上,USP14 抑制或缺失会损害 K63 连接的 IRF3 的去泛素化。此外,用 PT33 阻断 USP14 可增强 DC 对放射肿瘤细胞的感应,与放射协同作用,促进体内全身性抗肿瘤免疫。
我们的研究结果表明,USP14 是 IFN 产生的主要抑制因子之一,通过去除 IRF3 的 K63 连接泛素化,抑制了 IRF3 的激活。因此,USP14 的阻断导致 STING 信号转导激活和放射诱导的适应性免疫反应增强。