Suppr超能文献

基于双通道融合 EEG 时频特征学习的自动睡眠分期方法。

Amplitude-Time Dual-View Fused EEG Temporal Feature Learning for Automatic Sleep Staging.

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 May;35(5):6492-6506. doi: 10.1109/TNNLS.2022.3210384. Epub 2024 May 2.

Abstract

Electroencephalogram (EEG) plays an important role in studying brain function and human cognitive performance, and the recognition of EEG signals is vital to develop an automatic sleep staging system. However, due to the complex nonstationary characteristics and the individual difference between subjects, how to obtain the effective signal features of the EEG for practical application is still a challenging task. In this article, we investigate the EEG feature learning problem and propose a novel temporal feature learning method based on amplitude-time dual-view fusion for automatic sleep staging. First, we explore the feature extraction ability of convolutional neural networks for the EEG signal from the perspective of interpretability and construct two new representation signals for the raw EEG from the views of amplitude and time. Then, we extract the amplitude-time signal features that reflect the transformation between different sleep stages from the obtained representation signals by using conventional 1-D CNNs. Furthermore, a hybrid dilation convolution module is used to learn the long-term temporal dependency features of EEG signals, which can overcome the shortcoming that the small-scale convolution kernel can only learn the local signal variation information. Finally, we conduct attention-based feature fusion for the learned dual-view signal features to further improve sleep staging performance. To evaluate the performance of the proposed method, we test 30-s-epoch EEG signal samples for healthy subjects and subjects with mild sleep disorders. The experimental results from the most commonly used datasets show that the proposed method has better sleep staging performance and has the potential for the development and application of an EEG-based automatic sleep staging system.

摘要

脑电图(EEG)在研究大脑功能和人类认知表现方面发挥着重要作用,而 EEG 信号的识别对于开发自动睡眠分期系统至关重要。然而,由于 EEG 信号具有复杂的非平稳特性和个体差异,如何从 EEG 中获取有效的信号特征以用于实际应用仍然是一个具有挑战性的任务。在本文中,我们研究了 EEG 特征学习问题,并提出了一种基于幅度-时间双视图融合的新型时间特征学习方法,用于自动睡眠分期。首先,我们从可解释性的角度探讨了卷积神经网络对 EEG 信号的特征提取能力,并从幅度和时间两个角度构建了原始 EEG 的两个新表示信号。然后,我们使用传统的 1-D CNN 从获得的表示信号中提取反映不同睡眠阶段之间转换的幅度-时间信号特征。此外,使用混合扩张卷积模块来学习 EEG 信号的长期时间依赖特征,这可以克服小尺度卷积核只能学习局部信号变化信息的缺点。最后,我们对学习到的双视图信号特征进行基于注意力的特征融合,以进一步提高睡眠分期性能。为了评估所提出方法的性能,我们对健康受试者和轻度睡眠障碍受试者的 30 秒 EEG 信号样本进行了测试。来自最常用数据集的实验结果表明,所提出的方法具有更好的睡眠分期性能,并且有可能开发和应用基于 EEG 的自动睡眠分期系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验