Suppr超能文献

猪流行性腹泻病毒的离散时间生存模型。

A discrete-time survival model for porcine epidemic diarrhoea virus.

机构信息

Department of Statistics, North Carolina State University, Raleigh, North Carolina, USA.

Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA.

出版信息

Transbound Emerg Dis. 2022 Nov;69(6):3693-3703. doi: 10.1111/tbed.14739. Epub 2022 Oct 29.

Abstract

Since the arrival of porcine epidemic diarrhea virus (PEDV) in the United States in 2013, elimination and control programmes have had partial success. The dynamics of its spread are hard to quantify, though previous work has shown that local transmission and the transfer of pigs within production systems are most associated with the spread of PEDV. Our work relies on the history of PEDV infections in a region of the southeastern United States. This infection data is complemented by farm-level features and extensive industry data on the movement of both pigs and vehicles. We implement a discrete-time survival model and evaluate different approaches to modelling the local-transmission and network effects. We find strong evidence in that the local-transmission and pig-movement effects are associated with the spread of PEDV, even while controlling for seasonality, farm-level features and the possible spread of disease by vehicles. Our fully Bayesian model permits full uncertainty quantification of these effects. Our farm-level out-of-sample predictions have a receiver-operating characteristic area under the curve (AUC) of 0.779 and a precision-recall AUC of 0.097. The quantification of these effects in a comprehensive model allows stakeholders to make more informed decisions about disease prevention efforts.

摘要

自 2013 年猪流行性腹泻病毒(PEDV)传入美国以来,根除和控制计划已取得部分成功。尽管先前的研究表明,局部传播和猪在生产系统内的转移与 PEDV 的传播最相关,但PEDV 传播的动态难以量化。我们的工作依赖于美国东南部一个地区的 PEDV 感染史。该感染数据辅以农场层面的特征以及有关猪和车辆移动的广泛行业数据。我们实施了一个离散时间生存模型,并评估了不同方法来模拟局部传播和网络效应。我们发现有强有力的证据表明,即使在控制季节性、农场层面的特征和车辆传播疾病的可能性的情况下,局部传播和猪的移动效应与 PEDV 的传播有关。我们的完全贝叶斯模型允许对这些影响进行全面的不确定性量化。我们的农场层面的样本外预测的接收者操作特性曲线(ROC)下面积为 0.779,精度-召回率 AUC 为 0.097。在综合模型中对这些影响进行量化,使利益相关者能够更明智地做出有关疾病预防工作的决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验