Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States.
Department of Chemistry and Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, Minnesota 55812, United States.
Inorg Chem. 2022 Oct 24;61(42):16573-16585. doi: 10.1021/acs.inorgchem.2c01648. Epub 2022 Oct 12.
To study the photophysical and redox properties as a function of -aryl units, a series of hypervalent phosphorus(V) porphyrins, PP(OMe)·PF, PMP(OMe)·PF, PDMP(OMe)·PF, P345TMP(OMe)·PF, and P246TMP(OMe)·PF, with phenyl (P), 4-methoxyphenyl (MP), 3,5-dimethoxyphenyl (DMP), 3,4,5-trimethoxyphenyl (345TMP), and 2,4,6-trimethoxyphenyl (246TMP) units, respectively, have been synthesized. The P(+5) in the cavity makes the porphyrin ring electron-poor, whereas the methoxy groups make the -phenyl rings electron-rich. The presence of electron-rich and electron-poor portions within the porphyrin molecule promoted an intramolecular charge transfer (ICT). Also, the study suggests that the ICT depends on the number and position of the methoxy groups. The ICT is more prominent in methoxy-substituted phosphorus(V) porphyrins (PDMP(OMe).PF, P345TMP(OMe)·PF) and almost no ICT was found in no-methoxy, methoxy, and/or -methoxy phosphorus(V) porphyrins (PP(OMe)·PF, PMP(OMe)·PF, P246TMP(OMe)·PF). Transient absorption studies indicate that the ICT takes place on the picosecond time scale. The most striking results come from P246TMP(OMe)·PF, where each phenyl ring carries three methoxy units, like the P345TMP(OMe)·PF, but it failed to induce the ICT process. Electrochemical studies and time-dependent density functional theory (TD-DFT) calculations were used to support the experimental results. This study extensively explores why and how slight variations in meso-aryl substitutions lead to intricate changes in the photophysical and redox properties of phosphorus(V) porphyrins.
为了研究 - 芳基单元作为功能的光物理和氧化还原性质,一系列高价磷(V)卟啉,PP(OME)· PF,PMP(OME)· PF,PDMP(OME)· PF,P345TMP(OME)· PF 和 P246TMP(OME)· PF,具有苯基(P),4-甲氧基苯基(MP),3,5-二甲氧基苯基(DMP),3,4,5-三甲氧基苯基(345TMP)和 2,4,6-三甲氧基苯基(246TMP)单元,分别合成。空腔中的 P(+5)使卟啉环缺电子,而甲氧基使 - 苯基环富电子。卟啉分子内存在富电子和缺电子部分促进了分子内电荷转移(ICT)。此外,该研究表明 ICT 取决于甲氧基的数量和位置。ICT 在甲氧基取代的磷(V)卟啉(PDMP(OME)· PF,P345TMP(OME)· PF)中更为明显,而在无甲氧基、甲氧基和/或 - 甲氧基磷(V)卟啉(PP(OME)· PF,PMP(OME)· PF,P246TMP(OME)· PF)中几乎没有 ICT。瞬态吸收研究表明 ICT 发生在皮秒时间尺度上。最引人注目的结果来自 P246TMP(OME)· PF,其中每个苯基环带有三个甲氧基单元,与 P345TMP(OME)· PF 一样,但它未能诱导 ICT 过程。电化学研究和时变密度泛函理论(TD-DFT)计算用于支持实验结果。这项研究广泛探讨了为什么和如何介芳基取代的微小变化导致磷(V)卟啉的光物理和氧化还原性质发生复杂变化。