Suppr超能文献

一种使用卵巢超声图像检测多囊卵巢综合征的扩展机器学习技术。

An extended machine learning technique for polycystic ovary syndrome detection using ovary ultrasound image.

机构信息

Military Institute of Science and Technology, Department of Computer Science and Technology, Dhaka, 1216, Bangladesh.

出版信息

Sci Rep. 2022 Oct 12;12(1):17123. doi: 10.1038/s41598-022-21724-0.

Abstract

Polycystic ovary syndrome (PCOS) is the most prevalent endocrinological abnormality and one of the primary causes of anovulatory infertility in women globally. The detection of multiple cysts using ovary ultrasonograpgy (USG) scans is one of the most reliable approach for making an accurate diagnosis of PCOS and creating an appropriate treatment plan to heal the patients with this syndrome. Instead of depending on error-prone manual identification, an intelligent computer-aided cyst detection system can be a viable approach. Therefore, in this research, an extended machine learning classification technique for PCOS prediction has been proposed, trained and tested over 594 ovary USG images; where the Convolutional Neural Network (CNN) incorporating different state-of-the-art techniques and transfer learning has been employed for feature extraction from the images; and then stacking ensemble machine learning technique using conventional models as base learners and bagging or boosting ensemble model as meta-learner have been used on that reduced feature set to classify between PCOS and non-PCOS ovaries. The proposed technique significantly enhances the accuracy while also reducing training execution time comparing with the other existing ML based techniques. Again, following the proposed extended technique, the best performing results are obtained by incorporating the "VGGNet16" pre-trained model with CNN architecture as feature extractor and then stacking ensemble model with the meta-learner being "XGBoost" model as image classifier with an accuracy of 99.89% for classification.

摘要

多囊卵巢综合征(PCOS)是最常见的内分泌异常之一,也是全球女性排卵性不孕的主要原因之一。通过卵巢超声(USG)扫描检测多个囊肿是准确诊断 PCOS 并制定适当治疗计划以治疗该综合征患者的最可靠方法之一。与其依赖容易出错的手动识别,智能计算机辅助囊肿检测系统可能是一种可行的方法。因此,在这项研究中,提出了一种用于 PCOS 预测的扩展机器学习分类技术,该技术在 594 个卵巢 USG 图像上进行了训练和测试;其中,卷积神经网络(CNN)结合了不同的最先进技术和迁移学习,用于从图像中提取特征;然后,使用传统模型作为基础学习者的堆叠集成机器学习技术和作为元学习者的袋装或提升集成模型在该简化特征集上用于对 PCOS 和非 PCOS 卵巢进行分类。与其他基于 ML 的现有技术相比,该技术在提高准确性的同时还减少了训练执行时间。同样,按照所提出的扩展技术,通过将“VGGNet16”预先训练的模型与 CNN 架构结合作为特征提取器,并将堆叠集成模型与元学习者“XGBoost”模型作为图像分类器,在分类方面获得了最佳性能,准确率为 99.89%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0038/9556522/9c95deb2609f/41598_2022_21724_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验