Suppr超能文献

基于肿瘤核心活检代谢组学与多尺度建模整合评估一线化疗的肺癌患者的反应。

Evaluation of Lung Cancer Patient Response to First-Line Chemotherapy by Integration of Tumor Core Biopsy Metabolomics with Multiscale Modeling.

机构信息

Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.

James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.

出版信息

Ann Biomed Eng. 2023 Apr;51(4):820-832. doi: 10.1007/s10439-022-03096-8. Epub 2022 Oct 12.

Abstract

The standard of care for intermediate (Stage II) and advanced (Stages III and IV) non-small cell lung cancer (NSCLC) involves chemotherapy with taxane/platinum derivatives, with or without radiation. Ideally, patients would be screened a priori to allow non-responders to be initially treated with second-line therapies. This evaluation is non-trivial, however, since tumors behave as complex multiscale systems. To address this need, this study employs a multiscale modeling approach to evaluate first-line chemotherapy response of individual patient tumors based on metabolomic analysis of tumor core biopsies obtained during routine clinical evaluation. Model parameters were calculated for a patient cohort as a function of these metabolomic profiles, previously obtained from high-resolution 2DLC-MS/MS analysis. Evaluation metrics were defined to classify patients as Disease-Control (DC) [encompassing complete-response (CR), partial-response (PR), and stable-disease (SD)] and Progressive-Disease (PD) following first-line chemotherapy. Response was simulated for each patient and compared to actual response. The results show that patient classifications were significantly separated from each other, and also when grouped as DC vs. PD and as CR/PR vs. SD/PD, by fraction of initial tumor radius metric at 6 days post simulated bolus drug injection. This study shows that patient first-line chemotherapy response can in principle be evaluated from multiscale modeling integrated with tumor tissue metabolomic data, offering a first step towards individualized lung cancer treatment prognosis.

摘要

中晚期(II 期)和晚期(III 期和 IV 期)非小细胞肺癌(NSCLC)的标准治疗包括紫杉醇/铂类衍生物的化疗,联合或不联合放疗。理想情况下,患者会预先进行筛选,以使无反应者最初接受二线治疗。然而,由于肿瘤表现为复杂的多尺度系统,这种评估并非微不足道。为了解决这一需求,本研究采用多尺度建模方法,根据在常规临床评估中获得的肿瘤核心活检的代谢组学分析,评估个体患者肿瘤的一线化疗反应。模型参数是根据这些代谢组学图谱计算的,这些图谱之前是从高分辨率 2DLC-MS/MS 分析中获得的。定义了评估指标,以便根据一线化疗后的疾病控制(DC)[包括完全缓解(CR)、部分缓解(PR)和稳定疾病(SD)]和疾病进展(PD)对患者进行分类。对每个患者进行了模拟反应,并与实际反应进行了比较。结果表明,通过 6 天内模拟推注药物注射后初始肿瘤半径的分数,患者分类明显相互分离,并且当分为 DC 与 PD 以及 CR/PR 与 SD/PD 时也是如此。这项研究表明,原则上可以通过与肿瘤组织代谢组学数据相结合的多尺度建模来评估患者的一线化疗反应,为个体化肺癌治疗预后迈出了第一步。

相似文献

4
Management of non-small cell lung in cancer patients with stable disease.
Drugs. 2012 Jun 19;72 Suppl 1:20-7. doi: 10.2165/1163013-S0-000000000-00000.
5
[Efficacy and prognostic factors of 178 advanced non-small lung cancer patients undergoing different second-line chemotherapeutic regimens].
Zhonghua Zhong Liu Za Zhi. 2016 Apr;38(4):294-9. doi: 10.3760/cma.j.issn.0253-3766.2016.04.010.

引用本文的文献

1
Agent-based modeling in cancer biomedicine: applications and tools for calibration and validation.
Cancer Biol Ther. 2024 Dec 31;25(1):2344600. doi: 10.1080/15384047.2024.2344600. Epub 2024 Apr 28.

本文引用的文献

3
Modeling of Tumor Growth with Input from Patient-Specific Metabolomic Data.
Ann Biomed Eng. 2022 Mar;50(3):314-329. doi: 10.1007/s10439-022-02904-5. Epub 2022 Jan 26.
8
Metabolic reprogramming dynamics in tumor spheroids: Insights from a multicellular, multiscale model.
PLoS Comput Biol. 2019 Jun 11;15(6):e1007053. doi: 10.1371/journal.pcbi.1007053. eCollection 2019 Jun.
9
The Influence of Metabolism on Drug Response in Cancer.
Front Oncol. 2018 Nov 2;8:500. doi: 10.3389/fonc.2018.00500. eCollection 2018.
10
Evaluation of Drug-Loaded Gold Nanoparticle Cytotoxicity as a Function of Tumor Vasculature-Induced Tissue Heterogeneity.
Ann Biomed Eng. 2019 Jan;47(1):257-271. doi: 10.1007/s10439-018-02146-4. Epub 2018 Oct 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验