Suppr超能文献

利用人工智能预测肥胖风险并进行膳食规划,以减少成年人肥胖。

Predicting risk of obesity and meal planning to reduce the obese in adulthood using artificial intelligence.

机构信息

Department of Computer Science & Engineering, Chandigarh University, Chandigarh, Punjab, India.

出版信息

Endocrine. 2022 Dec;78(3):458-469. doi: 10.1007/s12020-022-03215-4. Epub 2022 Oct 12.

Abstract

BACKGROUND

An unhealthy diet or excessive amount of food intake creates obesity issues in human beings that further may cause several diseases such as Polycystic Ovary Syndrome (PCOS), Cardiovascular disease, Diabetes, Cancers, etc. Obesity is a major risk factor for PCOS, which is a common disease in women and is significantly correlated with weight gain.

METHODS

This study is providing a one-step solution for predicting the risk of obesity using different Machine Learning (ML) algorithms such as Gradient Boosting (GB), Bagging meta-estimator (BME), XG Boost (XGB), Random Forest (RF), Support Vector Machine (SVM), and K Nearest Neighbour (KNN). A dataset is collected from the UCI ML repository having features of physical description and eating habits of individuals to train the proposed model.

RESULTS

The model has been experimented with different training and testing data ratios such as (90:10, 80:20, 70:30,60:40). At a data ratio of 90:10, the GB classifier achieved the highest accuracy i.e., 98.11%. Further, at the 80:20 ratio, the GB and XGB provide the same result i.e., 97.87%. For the 70:30 data ratio, XGB achieves the highest accuracy i.e., 97.79%. Further, the Nearest Neighbour (NN) learning method is applied to meal planning to overcome obesity.

CONCLUSION

This method predicts the meal which includes breakfast, morning snacks, lunch, evening snacks, and dinner for the individual as per caloric and macronutrient requirements. The proposed research work can be used by practitioners to check obesity levels and to suggest meals to reduce the obese in adulthood.

摘要

背景

不健康的饮食或过量的食物摄入会导致人类肥胖问题,进而可能导致多种疾病,如多囊卵巢综合征(PCOS)、心血管疾病、糖尿病、癌症等。肥胖是 PCOS 的一个主要危险因素,PCOS 是一种常见的女性疾病,与体重增加有显著相关性。

方法

本研究使用不同的机器学习(ML)算法,如梯度提升(GB)、袋装元估计器(BME)、XG Boost(XGB)、随机森林(RF)、支持向量机(SVM)和 K 最近邻(KNN),为预测肥胖风险提供了一种一步解决方案。从 UCI ML 存储库中收集了一个数据集,其中包含个人身体描述和饮食习惯的特征,以训练提出的模型。

结果

该模型在不同的训练和测试数据比例(如 90:10、80:20、70:30、60:40)上进行了实验。在数据比例为 90:10 时,GB 分类器实现了最高的准确率,即 98.11%。此外,在 80:20 的比例下,GB 和 XGB 提供了相同的结果,即 97.87%。对于 70:30 的数据比例,XGB 实现了最高的准确率,即 97.79%。此外,最近邻(NN)学习方法应用于膳食计划,以克服肥胖。

结论

该方法根据热量和宏量营养素需求预测个体的膳食,包括早餐、上午小吃、午餐、下午小吃和晚餐。所提出的研究工作可以供从业者使用,以检查肥胖水平并建议减少成年人肥胖的饮食。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c572/9555702/20da8367f08a/12020_2022_3215_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验