Department Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
Department Medical Physiology and Pharmacology, University of Missouri, Columbia, Missouri.
J Appl Physiol (1985). 2022 Nov 1;133(5):1228-1236. doi: 10.1152/japplphysiol.00209.2022. Epub 2022 Oct 13.
Myogenic and flow-induced reactivity contribute to cerebral autoregulation, with potentially divergent roles for smaller versus larger arteries. The present study tested the hypotheses that compared with first-order (1A) branches of the middle cerebral artery, second- and third-order branches (2A and 3A, respectively) exhibit greater myogenic reactivity but reduced flow-induced constriction. Furthermore, nitric oxide synthase (NOS) inhibition may amplify myogenic reactivity and abolish instances of flow-induced dilation. Isolated porcine cerebral arteries mounted in a pressure myograph were exposed to incremental increases in intraluminal pressure (40-120 mmHg; = 41) or flow (1-1,170 µL/min; = 31). Intraluminal flows were adjusted to achieve 5, 10, 20, and 40 dyn/cm of wall shear stress at 60 mmHg. Myogenic tone was greater in 3A versus 1A arteries ( < 0.05). There was an inverse relationship between myogenic reactivity and passive arterial diameter ( < 0.01). NOS inhibition increased basal tone to a lesser extent in 3A versus 1A arteries ( < 0.01) but did not influence myogenic reactivity ( = 0.49). Increasing flow decreased luminal diameter ( ≤ 0.01), with increased vasoconstriction at 10-40 dyn/cm of shear stress ( < 0.01). However, relative responses were similar between 1A, 2A, and 3A arteries ( = 0.40) with and without NOS inhibition conditions ( ≥ 0.29). Whereas NOS inhibition increases basal myogenic tone, and myogenic reactivity was less in smaller versus larger arteries (range = ∼100-550 µM), neither NOS inhibition nor luminal diameter influences flow-induced constriction in porcine cerebral arteries. This study demonstrated size-dependent heterogeneity in myogenic reactivity in porcine cerebral arteries. Smaller branches of the middle cerebral artery exhibited increased myogenic reactivity, but attenuated NOS-dependent increases in myogenic tone compared with larger branches. Flow-dependent regulation does not exhibit the same variation; diameter-independent flow-induced vasoconstrictions occur across all branch orders and are not affected by NOS inhibition. Conceptually, flow-induced vasoconstriction contributes to cerebral autoregulation, particularly in larger arteries with low myogenic tone.
血管平滑肌的收缩反应和血流介导的收缩反应共同参与脑血流自动调节,其中较小的动脉(二级和三级分支)和较大的动脉(一级分支)可能发挥不同的作用。本研究的假设是,与大脑中动脉的一级(1A)分支相比,二级(2A)和三级(3A)分支表现出更强的血管平滑肌收缩反应,但血流介导的收缩减少。此外,一氧化氮合酶(NOS)抑制剂可能会放大血管平滑肌的收缩反应并消除血流诱导的扩张。将分离的猪脑动脉安装在压力肌动描记器中,使其暴露于管腔内压力的递增增加(40-120mmHg;n=41)或流量(1-1170μL/min;n=31)。管腔内的流量被调节以在 60mmHg 时达到 5、10、20 和 40 dyn/cm 的壁切应力。3A 动脉的血管平滑肌收缩反应明显强于 1A 动脉(<0.05)。血管平滑肌收缩反应与被动动脉直径之间存在反比关系(<0.01)。与 1A 动脉相比,NOS 抑制剂在 3A 动脉中对基础张力的影响较小(<0.01),但不影响血管平滑肌收缩反应(=0.49)。增加流量会减小管腔直径(≤0.01),在 10-40 dyn/cm 的剪切应力下,血管会发生更多的收缩(<0.01)。然而,在有和没有 NOS 抑制剂的情况下,1A、2A 和 3A 动脉的相对反应相似(=0.40)(≥0.29)。尽管 NOS 抑制剂增加了基础血管平滑肌的收缩反应,而且较小动脉(范围=约 100-550μM)的血管平滑肌收缩反应小于较大动脉,但 NOS 抑制剂和管腔直径都不影响猪脑动脉的血流诱导性收缩。本研究证明了猪脑动脉中存在依赖于大小的血管平滑肌收缩反应的异质性。大脑中动脉的较小分支表现出增强的血管平滑肌收缩反应,但与较大分支相比,其 NOS 依赖性的血管平滑肌收缩反应减弱。血流依赖性调节没有表现出相同的变化;直径独立的血流诱导性收缩发生在所有分支中,不受 NOS 抑制剂的影响。从概念上讲,血流诱导性收缩有助于脑血流自动调节,特别是在低血管平滑肌收缩反应的较大动脉中。