Suppr超能文献

独立式、自掺杂多孔硬碳:具有增强初始库仑效率的钠离子存储性能

Free-Standing, Self-Doped Porous Hard Carbon: Na-Ion Storage with Enhanced Initial Coulombic Efficiency.

作者信息

Ghani Usman, Iqbal Nousheen, Aboalhassan Ahmed A, Zhou Chenxin, Liu Bowen, Li Jinghan, Fang Yan, Aftab Tabish, Gu Jiajun, Liu Qinglei

机构信息

State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, P. R. China.

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China.

出版信息

ACS Appl Mater Interfaces. 2022 Oct 26;14(42):47507-47516. doi: 10.1021/acsami.2c07309. Epub 2022 Oct 13.

Abstract

The use of porous hard carbons (PHCs) as electrode materials in sodium-ion batteries has great potential; however, the exposure of large surface areas to electrolyte flow results in irregular and irreversible solid electrolyte interfaces (SEIs), leading to deteriorated ionic and electronic mobility and inferior initial Coulombic efficiency (ICE). These issues can be addressed through suitable structural modifications of PHC materials. Herein, the integration of high-surface-area PHCs with carbon nanofibers (CNFs) was accomplished by a simple electrospinning technique, which resulted in a uniform and reversible SEI layer. In the meantime, the CNFs' mesh provided connectivity and conductivity in the as-integrated electrodes, whereas PHCs offered fast diffusion kinetics and high Na ion storage capacity. Additionally, PHC integration with CNFs demonstrated an excellent ICE of 77% and a specific capacity of 505 mAh/g at 25 mA/g. Furthermore, the conjugated microstructure also provided flexibility and stability to the electrode (260 mAh/g after 500 cycles). This remarkable synergy may promote the development of free-standing, flexible, and highly porous properties in a single material for advanced energy storage applications.

摘要

在钠离子电池中使用多孔硬碳(PHC)作为电极材料具有巨大潜力;然而,大表面积暴露于电解液流动会导致不规则且不可逆的固体电解质界面(SEI),从而导致离子和电子迁移率下降以及初始库仑效率(ICE)较低。这些问题可以通过对PHC材料进行适当的结构改性来解决。在此,通过简单的静电纺丝技术实现了高表面积PHC与碳纳米纤维(CNF)的整合,这导致形成了均匀且可逆的SEI层。同时,CNF的网状结构在整合后的电极中提供了连通性和导电性,而PHC则提供了快速扩散动力学和高的钠离子存储容量。此外,PHC与CNF的整合在25 mA/g时表现出77%的优异ICE和505 mAh/g的比容量。此外,共轭微观结构还为电极提供了柔韧性和稳定性(500次循环后为260 mAh/g)。这种显著的协同作用可能会推动在单一材料中开发具有自支撑、柔韧性和高孔隙率特性的先进储能应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验