Suppr超能文献

基于无人机的移动边缘计算网络的路径规划与编队控制

Path Planning and Formation Control for UAV-Enabled Mobile Edge Computing Network.

作者信息

Choutri Kheireddine, Lagha Mohand, Meshoul Souham, Fadloun Samiha

机构信息

Aeronautical Sciences Laboratory, Aeronautical and Spatial Studies Institute, Blida 1 University, Blida 0900, Algeria.

Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.

出版信息

Sensors (Basel). 2022 Sep 24;22(19):7243. doi: 10.3390/s22197243.

Abstract

Recent developments in unmanned aerial vehicles (UAVs) have led to the introduction of a wide variety of innovative applications, especially in the Mobile Edge Computing (MEC) field. UAV swarms are suggested as a promising solution to cope with the issues that may arise when connecting Internet of Things (IoT) applications to a fog platform. We are interested in a crucial aspect of designing a swarm of UAVs in this work, which is the coordination of swarm agents in complicated and unknown environments. Centralized leader-follower formations are one of the most prevalent architectural designs in the literature. In the event of a failed leader, however, the entire mission is canceled. This paper proposes a framework to enable the use of UAVs under different MEC architectures, overcomes the drawbacks of centralized architectures, and improves their overall performance. The most significant contribution of this research is the combination of distributed formation control, online leader election, and collaborative obstacle avoidance. For the initial phase, the optimal path between departure and arrival points is generated, avoiding obstacles and agent collisions. Next, a quaternion-based sliding mode controller is designed for formation control and trajectory tracking. Moreover, in the event of a failed leader, the leader election phase allows agents to select the most qualified leader for the formation. Multiple possible scenarios simulating real-time applications are used to evaluate the framework. The obtained results demonstrate the capability of UAVs to adapt to different MEC architectures under different constraints. Lastly, a comparison is made with existing structures to demonstrate the effectiveness, safety, and durability of the designed framework.

摘要

无人机(UAV)的最新发展催生了各种各样的创新应用,尤其是在移动边缘计算(MEC)领域。无人机群被认为是一种很有前景的解决方案,可应对将物联网(IoT)应用连接到雾平台时可能出现的问题。在这项工作中,我们关注设计无人机群的一个关键方面,即在复杂和未知环境中群智能体的协调。集中式的领导者-跟随者编队是文献中最普遍的架构设计之一。然而,如果领导者出现故障,整个任务就会取消。本文提出了一个框架,以实现无人机在不同MEC架构下的应用,克服集中式架构的缺点,并提高其整体性能。这项研究最显著的贡献是将分布式编队控制、在线领导者选举和协同避障相结合。在初始阶段,生成出发和到达点之间的最优路径,避免障碍物和智能体碰撞。接下来,设计了一种基于四元数的滑模控制器用于编队控制和轨迹跟踪。此外,在领导者出现故障的情况下,领导者选举阶段允许智能体为编队选择最合格的领导者。使用多种模拟实时应用的可能场景来评估该框架。获得的结果表明无人机在不同约束下适应不同MEC架构的能力。最后,与现有结构进行比较,以证明所设计框架的有效性、安全性和耐用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06ab/9572838/74b8dd7bd1eb/sensors-22-07243-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验