Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
IT de Tijuana, Tecnológico Nacional de México, Tijuana 22435, Mexico.
Sensors (Basel). 2022 Oct 1;22(19):7461. doi: 10.3390/s22197461.
A good approximation to power amplifier (PA) behavioral modeling requires precise baseband models to mitigate nonlinearities. Since digital predistortion (DPD) is used to provide the PA linearization, a framework is necessary to validate the modeling figures of merit support under signal conditioning and transmission restrictions. A field-programmable gate array (FPGA)-based testbed is developed to measure the wide-band PA behavior using a single-carrier 64-quadrature amplitude modulation (QAM) multiplexed by orthogonal frequency-division multiplexing (OFDM) based on long-term evolution (LTE) as a stimulus, with different bandwidths signals. In the search to provide a heuristic target approach modeling, this paper introduces a feature extraction concept to find an appropriate complexity solution considering the high sparse data issue in amplitude to amplitude (AM-AM) and amplitude to phase AM-PM models extraction, whose penalties are associated with overfitting and hardware complexity in resulting functions. Thus, experimental results highlight the model performance for a high sparse data regime and are compared with a regression tree (RT), random forest (RF), and cubic-spline (CS) model accuracy capabilities for the signal conditioning to show a reliable validation, low-complexity, according to the peak-to-average power ratio (PAPR), complementary cumulative distribution function (CCDF), coefficients extraction, normalized mean square error (NMSE), and execution time figures of merit. The presented models provide a comparison with original data that aid to compare the dimension and robustness for each surrogate model where (i) machine learning (ML)-based and (ii) CS interpolate-based where high sparse data are present, NMSE between the CS interpolated based are also compared to demonstrate the efficacy in the prediction methods with lower convergence times and complexities.
为了对功率放大器 (PA) 的行为进行良好的逼近建模,需要精确的基带模型来减轻非线性。由于数字预失真 (DPD) 用于提供 PA 线性化,因此需要一个框架来验证建模指标在信号调节和传输限制下的支持。开发了一种基于现场可编程门阵列 (FPGA) 的测试平台,使用基于长期演进 (LTE) 的单载波 64 正交幅度调制 (QAM) 与正交频分复用 (OFDM) 复用作为刺激,测量宽带 PA 行为,信号具有不同的带宽。在寻求提供启发式目标建模方法的过程中,本文引入了一种特征提取概念,以找到一种合适的复杂度解决方案,同时考虑到幅度到幅度 (AM-AM) 和幅度到相位 AM-PM 模型提取中高稀疏数据问题,其惩罚与过拟合和硬件复杂性相关在生成函数中。因此,实验结果突出了模型在高稀疏数据环境下的性能,并与回归树 (RT)、随机森林 (RF) 和三次样条 (CS) 模型的信号调节精度能力进行了比较,以显示可靠的验证、低复杂度,根据峰值平均功率比 (PAPR)、互补累积分布函数 (CCDF)、系数提取、归一化均方误差 (NMSE) 和执行时间指标。所提出的模型提供了与原始数据的比较,有助于比较每个替代模型的维度和稳健性,其中 (i) 基于机器学习 (ML) 和 (ii) CS 插补的存在高稀疏数据时,还比较了 CS 插补的 NMSE 之间的关系,以证明在具有较低收敛时间和复杂度的预测方法中的有效性。