Gao Zhensen, Wu Qiongqiong, Liao Lei, Su Biao, Gao Xulin, Fu Songnian, Li Zhaohui, Wang Yuncai, Qin Yuwen
Opt Express. 2022 Aug 15;30(17):31209-31219. doi: 10.1364/OE.467578.
Protecting confidential high speed optical signal transmission at the lowest physical layer is a critical challenge for modern fiber-optic communication systems. In this paper, we experimentally demonstrate a novel synchronous privacy enhanced chaotic temporal phase en/decryption scheme for high-speed physical layer secure optical communication. A remote chaos synchronization architecture relying on common source signal driving and private response hardware modules comprising of dispersive components and slave lasers is employed to generate synchronized private chaotic en/decryption signals, and simultaneously suppress residual driving-response correlation for enhancing the security. A proof-of-principle demonstration by secure transmission of a 28 Gb/s on-off-keying modulated confidential signal over 100 km single mode fiber link based on the private chaotic temporal phase en/decryption scheme is successfully achieved. The demonstrated hardware optical en/decryption approach may provide a promising way towards future ultra-high speed physical layer secure optical communication systems.
在最低物理层保护机密高速光信号传输是现代光纤通信系统面临的一项关键挑战。在本文中,我们通过实验演示了一种用于高速物理层安全光通信的新型同步隐私增强混沌时间相位加密/解密方案。采用了一种基于公共源信号驱动和由色散组件及从激光器组成的私有响应硬件模块的远程混沌同步架构,以生成同步的私有混沌加密/解密信号,并同时抑制残余驱动 - 响应相关性以增强安全性。基于私有混沌时间相位加密/解密方案,成功实现了在100公里单模光纤链路上安全传输28 Gb/s开关键控调制机密信号的原理验证演示。所展示的硬件光学加密/解密方法可能为未来超高速物理层安全光通信系统提供一条有前景的途径。