De Oro Ochoa Esteban, Carmona García Mauricio, Durango Padilla Néstor, Martínez Remolina Andrés
Mechanical Engineering Department, Universidad del Norte, Barranquilla, Colombia.
Association for the Development of Aquaponics in Colombia "ADACOL", Colombia.
Heliyon. 2022 Oct 1;8(10):e10824. doi: 10.1016/j.heliyon.2022.e10824. eCollection 2022 Oct.
This work presents an experimental evaluation of a Venturi and Venturi-Vortex microbubble aeration system, taking as input variables the water-air flow ratio, water renewal time and area-volume ratio of the water tank. The aeration process response variables are defined in terms of oxygen transfer and aeration efficiency through the standard volumetric mass transfer coefficient (Ka), standard oxygen transfer rate (SOTR), and standard aeration efficiency (SAE). Two methods of air injection were analyzed: 1. Air injection in the throat chamber of the Venturi generator; 2. air supplying in the suction side of the hydraulic pump of the aeration system. Experimental results indicate that the water renewal time variable (RT) is a statistically significant factor with respect to the Ka, which can be maximized by decreasing RT. The effects of the variable flow ratio (FR) are greater than the effects of renewal time and area-volume ratio (AVR) concerning SOTR and SAE, indicating a maximum response with a minimum flow ratio, using the Venturi-Vortex microbubble generator. When the flow ratio decreases, the air flow increases, generating and transferring a greater amount of microbubbles (MB) into the water. It was found that increasing the air flow produced an increase in the standard oxygen transfer rate SOTR and standard aeration efficiency SAE. Results allow concluding that the injection of the air flow from the suction side of the pump promotes the generation of microbubbles (MB) for a maximum air flow allowed by the system. SOTR and SAE could be maximized whit the flow ratio factor and the Venturi-Vortex generator, supplying air flow from the suction side of the hydraulic pump.
这项工作对文丘里和文丘里 - 涡旋微气泡曝气系统进行了实验评估,将水箱的水 - 空气流量比、水更新时间和面积 - 体积比作为输入变量。曝气过程的响应变量通过标准体积传质系数(Ka)、标准氧传递速率(SOTR)和标准曝气效率(SAE)来定义氧传递和曝气效率。分析了两种空气注入方法:1. 在文丘里发生器的喉部腔室注入空气;2. 在曝气系统液压泵的吸入侧供应空气。实验结果表明,水更新时间变量(RT)对于Ka而言是一个具有统计学意义 的因素,可以通过缩短RT使其最大化。关于SOTR和SAE,可变流量比(FR)的影响大于更新时间和面积 - 体积比(AVR)的影响,这表明使用文丘里 - 涡旋微气泡发生器时,在最小流量比下有最大响应。当流量比降低时,空气流量增加,会产生并向水中传递更多的微气泡(MB)。研究发现,增加空气流量会使标准氧传递速率SOTR和标准曝气效率SAE提高。结果表明,从泵的吸入侧注入空气流可促进微气泡(MB)的产生,达到系统允许的最大空气流量。通过流量比因素和文丘里 - 涡旋发生器,从液压泵的吸入侧供应空气流,可以使SOTR和SAE最大化。