Department of Data Analysis and Artificial Intelligence, Synapse Research Institute, Maastricht, Netherlands.
Department of Anesthesiology, Ziekenhuis Oost Limburg, Genk, Belgium.
Front Immunol. 2022 Sep 28;13:977443. doi: 10.3389/fimmu.2022.977443. eCollection 2022.
Thrombosis is a major clinical complication of COVID-19 infection. COVID-19 patients show changes in coagulation factors that indicate an important role for the coagulation system in the pathogenesis of COVID-19. However, the multifactorial nature of thrombosis complicates the prediction of thrombotic events based on a single hemostatic variable. We developed and validated a neural net for the prediction of COVID-19-related thrombosis. The neural net was developed based on the hemostatic and general (laboratory) variables of 149 confirmed COVID-19 patients from two cohorts: at the time of hospital admission (cohort 1 including 133 patients) and at ICU admission (cohort 2 including 16 patients). Twenty-six patients suffered from thrombosis during their hospital stay: 19 patients in cohort 1 and 7 patients in cohort 2. The neural net predicts COVID-19 related thrombosis based on C-reactive protein (relative importance 14%), sex (10%), thrombin generation (TG) time-to-tail (10%), α-Macroglobulin (9%), TG curve width (9%), thrombin-α-Macroglobulin complexes (9%), plasmin generation lag time (8%), serum IgM (8%), TG lag time (7%), TG time-to-peak (7%), thrombin-antithrombin complexes (5%), and age (5%). This neural net can predict COVID-19-thrombosis at the time of hospital admission with a positive predictive value of 98%-100%.
血栓形成是 COVID-19 感染的主要临床并发症。COVID-19 患者的凝血因子发生变化,表明凝血系统在 COVID-19 的发病机制中起重要作用。然而,血栓形成的多因素性质使得基于单一止血变量预测血栓事件变得复杂。我们开发并验证了一种用于预测 COVID-19 相关血栓形成的神经网络。该神经网络是基于两个队列中 149 名确诊 COVID-19 患者的止血和一般(实验室)变量开发的:入院时(队列 1 包括 133 名患者)和 ICU 入院时(队列 2 包括 16 名患者)。在住院期间,有 26 名患者发生血栓形成:队列 1 中有 19 名患者,队列 2 中有 7 名患者。该神经网络基于 C 反应蛋白(相对重要性 14%)、性别(10%)、凝血酶生成(TG)尾巴时间(10%)、α-巨球蛋白(9%)、TG 曲线宽度(9%)、凝血酶-α-巨球蛋白复合物(9%)、纤溶酶生成延迟时间(8%)、血清 IgM(8%)、TG 延迟时间(7%)、TG 达峰时间(7%)、凝血酶-抗凝血酶复合物(5%)和年龄(5%)来预测 COVID-19 相关血栓形成。该神经网络可以在入院时预测 COVID-19 血栓形成,阳性预测值为 98%-100%。