Suppr超能文献

基于阿基米德范数和三角共范函数的广义犹豫模糊数的各种聚合算子。

Various aggregation operators of the generalized hesitant fuzzy numbers based on Archimedean -norm and -conorm functions.

作者信息

Garg Harish, Keikha Abazar

机构信息

School of Mathematics, Thapar Institute of Engineering & Technology, Deemed University, Patiala, Punjab 147004 India.

Department of Mathematics, Velayat University, Iranshahr, Iran.

出版信息

Soft comput. 2022;26(24):13263-13276. doi: 10.1007/s00500-022-07516-8. Epub 2022 Oct 8.

Abstract

This paper intends to introduce mathematical tools for aggregation of the generalized hesitant fuzzy numbers in order to increase the use of them in the real world. The proposed operators, are based on general form of -norm and -conorm functions, enable us to do some mathematical computations and aggregate the given generalized hesitant fuzzy numbers. At first, some famous Archimedean -norms and -conorms, i.e., Algebraic, Einstein, Hamacher, and Frank -norms and -conorms, and their properties, have been developed to be employed with generalized hesitant fuzzy numbers. Then, several averaging and geometric-based aggregation operators for generalized hesitant fuzzy numbers have been proposed. Later on, a decision-making algorithm has been defined based on such operators to address the problems. The necessity and application of the proposed concepts have been explained by some numerical examples.

摘要

本文旨在介绍用于广义犹豫模糊数聚合的数学工具,以增加它们在现实世界中的应用。所提出的算子基于三角模和三角余模函数的一般形式,使我们能够进行一些数学计算并聚合给定的广义犹豫模糊数。首先,已开发出一些著名的阿基米德三角模和三角余模,即代数、爱因斯坦、哈马赫和弗兰克三角模和三角余模及其性质,以便与广义犹豫模糊数一起使用。然后,针对广义犹豫模糊数提出了几种基于平均和几何的聚合算子。随后,基于这些算子定义了一种决策算法来解决相关问题。通过一些数值例子解释了所提出概念的必要性和应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c44/9547579/a5c2fdcf9938/500_2022_7516_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验