Tong Zhen, Lv Chao, Zhou Yao, Zhang Peng-Fang, Xiang Cheng-Cheng, Li Zhen-Gang, Wang Zhen, Liu Zong-Kui, Li Jun-Tao, Sun Shi-Gang
College of Energy, Xiamen University, Xiamen, 361005, P. R. China.
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.
Small. 2022 Dec;18(48):e2204836. doi: 10.1002/smll.202204836. Epub 2022 Oct 17.
The lithium-oxygen (Li-O ) battery with high energy density of 3860 Wh kg represents one of the most promising new secondary batteries for future electric vehicles and mobile electronic devices. However, slow oxygen reduction/oxygen evolution (ORR/OER) reaction efficiency and unstable cycling performance restrain the practical applications of the Li-O battery. Herein, Ru-modified nitrogen-doped porous carbon-encapsulated Co nanoparticles (Ru/Co@CoN -C) are synthesized through reduction of Ru on metal-organic framework (MOFs) pyrolyzed derivatives strategies. Porous carbon polyhedra provide channels for reactive species and stable structure ensures the cyclic stability of the catalyst; abundant Co-N sites and high specific surface area (353 m g ) provide more catalytically active sites and deposition sites for reaction products. Theoretical calculations further verify that Ru/Co@CoN -C can regulate the growth of Li O to improve reversibility of Li-O batteries. Li-O batteries with Ru/Co@CoN -C as cathode catalyst achieve small voltage gaps of 1.08 V, exhibit excellent cycle stability (205 cycles), and deliver high discharge specific capacity (17050 mAh g ). Furthermore, pouch-type Li-O batteries that maintain stable electrochemical performance output even under conditions of bending deformation and corner cutting are successfully assembled. This study demonstrates Ru/Co@CoN -C catalyst's great application potential in Li-O batteries.
能量密度高达3860瓦时/千克的锂氧(Li-O₂)电池是未来电动汽车和移动电子设备中最具前景的新型二次电池之一。然而,缓慢的氧还原/析氧(ORR/OER)反应效率和不稳定的循环性能限制了锂氧电池的实际应用。在此,通过在金属有机框架(MOF)热解衍生物策略上还原Ru,合成了Ru修饰的氮掺杂多孔碳包覆Co纳米颗粒(Ru/Co@CoNₓ-C)。多孔碳多面体为反应物种提供通道,稳定的结构确保了催化剂的循环稳定性;丰富的Co-N位点和高比表面积(353平方米/克)为反应产物提供了更多的催化活性位点和沉积位点。理论计算进一步证实,Ru/Co@CoNₓ-C可以调节Li₂O₂的生长,以提高锂氧电池的可逆性。以Ru/Co@CoNₓ-C作为阴极催化剂的锂氧电池实现了1.08伏的小电压间隙,表现出优异的循环稳定性(205次循环),并提供了高放电比容量(17050毫安时/克)。此外,还成功组装了即使在弯曲变形和切角条件下仍能保持稳定电化学性能输出的软包型锂氧电池。这项研究证明了Ru/Co@CoNₓ-C催化剂在锂氧电池中的巨大应用潜力。