Suppr超能文献

镜面显微镜检查

Specular Microscopy

作者信息

Kaur Kirandeep, Gurnani Bharat

机构信息

Gomabai Netralaya and Research Centre

Abstract

The corneal endothelium comprises a monolayer of hexagonal cells and it is imperative to assess the health of the corneal endothelium. Specular microscopy is a noninvasive modality that can document the healthy and diseased endothelium photographically. Specular microscopy is also crucial in assessing the preoperative endothelial health before high-risk surgeries, comparing various techniques, the impact of lasers during refractive surgery, and the assessment of donor cornea before transplantation. Specular microscopy represents a transformative advancement in ophthalmic imaging, providing an unparalleled window into the corneal endothelium, a critical layer of cells vital for maintaining corneal transparency and overall ocular health. This noninvasive photographic technique allows clinicians and researchers to observe and assess the endothelial cell layer at the back of the cornea directly, offering insights that were once inaccessible without invasive methods or post-mortem analysis. The various endothelial pathologies where specular microscopy plays an important role include Fuchs endothelial dystrophy, corneal dystrophies, posterior polymorphous dystrophy, pseudophakic bullous keratopathy, congenital hereditary endothelial dystrophy, viral endothelitis, ICE syndrome, trauma, uveitis and pharmacological disruption of the endothelium. Various specular microscopes are available for documenting endothelial cell details at various magnifications and calibrations. Approximately 75 years ago, Vogt tried to obtain the endothelial cell morphology by using the reflected light of a slit lamp. However, limited magnification and rapid eye movements precluded a clear image. David Maurice first described specular microscopy in 1968. In 1975, Laing first used the specular microscope for clinical use. A year later, Baurne et al used the specular microscope at 200X for rapid endothelial examination and photography. In corneal edema, the specular reflection is masked and hampers visualization of the corneal endothelium. Eye banks also need to assess the donor's corneal endothelial status. The endothelial cell layer is only one cell thick and is essential in preserving corneal dehydration and clarity. The cells act as a barrier to fluid from the aqueous humor and pump excess fluid from the stroma to prevent corneal swelling. Any dysfunction or decline in the cell count can lead to corneal edema and loss of visual acuity. Unlike other cells in the body, human corneal endothelial cells are post-mitotic: they do not regenerate. This places greater importance on monitoring their health and integrity to prevent and manage corneal diseases. The practice of specular microscopy in ophthalmology dates back to the early 20th century, but it was not until computer-assisted image analysis became available in the late 1970s and early 1980s that its use became more widespread. The innovation of non-contact specular microscopes allowed for a safer, more efficient assessment of the endothelium, making the process more comfortable for patients and convenient for practitioners. In a specular microscopy exam, light is directed toward the cornea and reflected off the inner endothelial layer. This reflection captures an image that can be analyzed for endothelial cell density (ECD), cell size (polymegathism), and shape (pleomorphism). ECD is a primary indicator of endothelial health, with a lower count suggesting a compromised cornea. Polymegathism and pleomorphism provide additional details regarding the uniformity and viability of the endothelial cells, with increased variation often indicating cellular stress or disease. The precision of specular microscopy has been instrumental in preoperative evaluations for intraocular surgeries, such as cataract extraction and corneal transplantation. The integrity of the endothelium is a critical determinant in patient selection and surgical prognosis, as iatrogenic trauma to this layer can have significant postoperative consequences. Consequently, the ability to accurately assess the endothelium has improved surgical outcomes and patient care. In corneal transplantation, specular microscopy is invaluable for determining the quality of donor corneas, ensuring that only tissues with a healthy endothelium are used for grafts. The technique has also revolutionized the management of corneal dystrophies and endothelial disorders such as Fuchs endothelial dystrophy and posterior polymorphous corneal dystrophy. In these conditions, specular microscopy can track disease progression and guide the timing of surgical interventions. In cases of acute or chronic corneal edema, the clarity provided by specular microscopy into the endothelial cell's health is paramount in formulating a treatment strategy. Moreover, specular microscopy is not limited to disease management, as it plays a significant role in the fitting and managing of contact lenses, particularly in long-term wearers where endothelial damage is a concern. It offers the means to monitor the long-term effects of contact lens wear on the endothelium, enabling early detection of adverse reactions and preventing potential complications. Specular microscopy provides quantitative and qualitative data that enhance research and clinical practice. In drug trials, the technique offers a metric for assessing drug toxicity in the cornea. Specular microscopy also aids in evaluating the impact of various ocular surgeries on the endothelium, thus influencing surgical techniques and postoperative care. However, specular microscopy is not without limitations. Image quality can be affected by factors such as corneal clarity, patient cooperation, and the presence of corneal pathology. In such cases, alternative methods like confocal microscopy may be necessary. Moreover, interpreting specular images requires significant expertise, as misinterpretation can lead to erroneous clinical decisions. Technological advancements continue to refine specular microscopy. Today, newer models boast increased automation, better image resolution, and user-friendly interfaces that streamline the process and enhance accuracy. Current research aims to develop software capable of more detailed analyses, potentially identifying endothelial changes before they manifest clinically. The continued evolution of specular microscopy will allow for its expanded use in clinical and research areas. With the burgeoning interest in regenerative medicine and cell-based therapies, the ability to monitor endothelial cell health is poised to become even more integral to ophthalmic practice. Specular microscopy thus remains a cornerstone in the field, not just as a tool for diagnosis and monitoring but as a beacon guiding ophthalmologists toward optimizing patient outcomes.

摘要

角膜内皮由单层六边形细胞组成,评估角膜内皮的健康状况至关重要。镜面显微镜检查是一种非侵入性方法,能够通过摄影记录健康和患病的内皮情况。镜面显微镜检查在评估高风险手术前的内皮健康状况、比较各种技术、屈光手术中激光的影响以及移植前供体角膜的评估方面也至关重要。镜面显微镜检查代表了眼科成像的一项变革性进展,为角膜内皮提供了一个无与伦比的观察窗口,角膜内皮是维持角膜透明度和整体眼部健康的关键细胞层。这种非侵入性摄影技术使临床医生和研究人员能够直接观察和评估角膜后部的内皮细胞层,提供了以往不通过侵入性方法或尸检分析就无法获得的见解。镜面显微镜检查发挥重要作用的各种内皮病变包括富克斯内皮营养不良、角膜营养不良、后多形性营养不良、人工晶状体性大泡性角膜病变、先天性遗传性内皮营养不良、病毒性内皮炎、ICE综合征、外伤、葡萄膜炎以及内皮的药物性破坏。有各种镜面显微镜可用于在不同放大倍数和校准下记录内皮细胞细节。大约75年前,沃格特试图利用裂隙灯的反射光获取内皮细胞形态。然而,放大倍数有限和眼球快速运动妨碍了获得清晰图像。1968年,大卫·莫里斯首次描述了镜面显微镜检查。1975年,莱恩首次将镜面显微镜用于临床。一年后,鲍恩等人使用200倍的镜面显微镜进行快速内皮检查和摄影。在角膜水肿时,镜面反射被掩盖,妨碍了角膜内皮的可视化。眼库也需要评估供体的角膜内皮状况。内皮细胞层只有一个细胞厚,对于保持角膜脱水和透明度至关重要。这些细胞充当房水液体的屏障,并将多余的液体从基质中泵出以防止角膜肿胀。细胞计数的任何功能障碍或下降都可能导致角膜水肿和视力丧失。与体内的其他细胞不同,人类角膜内皮细胞是有丝分裂后细胞:它们不会再生。这使得监测它们的健康和完整性对于预防和管理角膜疾病更为重要。眼科中镜面显微镜检查的实践可追溯到20世纪初,但直到20世纪70年代末80年代初计算机辅助图像分析出现后,其应用才变得更加广泛。非接触式镜面显微镜的创新使得对内皮的评估更安全、更高效,使该过程对患者更舒适,对从业者更方便。在镜面显微镜检查中,光线射向角膜并从内侧内皮层反射。这种反射捕获的图像可用于分析内皮细胞密度(ECD)、细胞大小(大小不均)和形状(形态异常)。ECD是内皮健康的主要指标,计数较低表明角膜受损。大小不均和形态异常提供了关于内皮细胞均匀性和活力的更多细节,变化增加通常表明细胞应激或疾病。镜面显微镜检查的精确性在白内障摘除和角膜移植等眼内手术的术前评估中发挥了重要作用。内皮的完整性是患者选择和手术预后的关键决定因素,因为对这一层的医源性损伤可能会产生重大的术后后果。因此,准确评估内皮的能力改善了手术结果和患者护理。在角膜移植中,镜面显微镜检查对于确定供体角膜的质量非常重要,确保仅使用内皮健康的组织进行移植。该技术还彻底改变了角膜营养不良和内皮疾病如富克斯内皮营养不良和后多形性角膜营养不良的管理。在这些情况下,镜面显微镜检查可以跟踪疾病进展并指导手术干预的时机。在急性或慢性角膜水肿的情况下,镜面显微镜检查提供的关于内皮细胞健康的清晰度对于制定治疗策略至关重要。此外,镜面显微镜检查不仅限于疾病管理,它在隐形眼镜的验配和管理中也发挥着重要作用,特别是在长期佩戴者中,内皮损伤是一个问题。它提供了监测隐形眼镜佩戴对内皮的长期影响的方法,能够早期发现不良反应并预防潜在并发症。镜面显微镜检查提供定量和定性数据,增强了研究和临床实践。在药物试验中,该技术提供了评估角膜药物毒性的指标。镜面显微镜检查还有助于评估各种眼科手术对内皮的影响,从而影响手术技术和术后护理。然而,镜面显微镜检查并非没有局限性。图像质量可能受到角膜清晰度、患者配合度和角膜病变等因素的影响。在这种情况下,可能需要像共焦显微镜这样的替代方法。此外,解读镜面图像需要大量专业知识,因为错误解读可能导致错误的临床决策。技术进步不断改进镜面显微镜检查。如今,更新的型号具有更高的自动化程度、更好的图像分辨率和用户友好的界面,简化了流程并提高了准确性。当前研究旨在开发能够进行更详细分析的软件,可能在临床症状出现之前识别内皮变化。镜面显微镜检查的持续发展将使其在临床和研究领域的应用得到扩展。随着对再生医学和基于细胞的疗法的兴趣迅速增长,监测内皮细胞健康的能力有望在眼科实践中变得更加不可或缺。因此,镜面显微镜检查仍然是该领域的基石,不仅作为诊断和监测工具,而且作为引导眼科医生优化患者治疗效果的灯塔。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验