Guo Wenfei, Wu Yantao, Xiong Zhongfei, Jing Yuhao, Chen Yuntian
Opt Express. 2022 Oct 10;30(21):37910-37924. doi: 10.1364/OE.472148.
Particular waveguide structures and refractive index distribution can lead to specified degeneracy of eigenmodes. To obtain an accurate understanding of this phenomenon, we propose a simple yet effective approach, i.e., generalized eigenvalue approach based on Maxwell's equations, for the analysis of waveguide mode symmetry. In this method, Maxwell's equations are reformulated into generalized eigenvalue problems. The waveguide eigenmodes are completely determined by the generalized eigenvalue problem given by two matrices (M, N), where M is 6 × 6 waveguide Hamiltonian and N is a constant singular matrix. Close examination shows that N usually commute with the corresponding matrix of a certain symmetry operation, thus the waveguide eigenmode symmetry is essentially determined by M, in contrast to the tedious and complex procedure given in the previous work [Opt. Express25, 29822 (2017)10.1364/OE.25.029822]. Based on this new approach, we discuss several symmetry operations and the corresponding symmetries including chiral, parity-time reversal, rotation symmetry, wherein the constraints of symmetry requirements on material parameters are derived in a much simpler way. In several waveguides with balanced gain and loss, anisotropy, and geometrical symmetry, the analysis of waveguide mode symmetry based on our simple yet effective approach is consistent with previous results, and shows perfect agreement with full-wave simulations.
特定的波导结构和折射率分布会导致本征模出现特定的简并情况。为了准确理解这一现象,我们提出一种简单而有效的方法,即基于麦克斯韦方程组的广义特征值方法,用于分析波导模式对称性。在该方法中,麦克斯韦方程组被重新表述为广义特征值问题。波导本征模完全由两个矩阵(M,N)给出的广义特征值问题确定,其中M是6×6的波导哈密顿量,N是一个常数奇异矩阵。仔细研究表明,N通常与某个对称操作的相应矩阵对易,因此与先前工作[Opt. Express25, 29822 (2017)10.1364/OE.25.029822]中给出的冗长复杂的过程不同,波导本征模对称性本质上由M决定。基于这种新方法,我们讨论了几种对称操作及其相应的对称性,包括手性、宇称 - 时间反演、旋转对称性,其中以一种简单得多的方式推导出了对称要求对材料参数的约束。在几个具有平衡增益和损耗、各向异性以及几何对称性的波导中,基于我们这种简单而有效方法的波导模式对称性分析与先前结果一致,并且与全波模拟结果完美吻合。