Suppr超能文献

通过组合索引优化的单核转录组谱分析。

Optimized single-nucleus transcriptional profiling by combinatorial indexing.

机构信息

Department of Genome Sciences, University of Washington, Seattle, WA, USA.

Department of Biology, Case Western Reserve University, Cleveland, OH, USA.

出版信息

Nat Protoc. 2023 Jan;18(1):188-207. doi: 10.1038/s41596-022-00752-0. Epub 2022 Oct 19.

Abstract

Single-cell combinatorial indexing RNA sequencing (sci-RNA-seq) is a powerful method for recovering gene expression data from an exponentially scalable number of individual cells or nuclei. However, sci-RNA-seq is a complex protocol that has historically exhibited variable performance on different tissues, as well as lower sensitivity than alternative methods. Here, we report a simplified, optimized version of the sci-RNA-seq protocol with three rounds of split-pool indexing that is faster, more robust and more sensitive and has a higher yield than the original protocol, with reagent costs on the order of 1 cent per cell or less. The total hands-on time from nuclei isolation to final library preparation takes 2-3 d, depending on the number of samples sharing the experiment. The improvements also allow RNA profiling from tissues rich in RNases like older mouse embryos or adult tissues that were problematic for the original method. We showcase the optimized protocol via whole-organism analysis of an E16.5 mouse embryo, profiling ~380,000 nuclei in a single experiment. Finally, we introduce a 'Tiny-Sci' protocol for experiments in which input material is very limited.

摘要

单细胞组合索引 RNA 测序 (sci-RNA-seq) 是一种从可指数扩展的单个细胞或细胞核中恢复基因表达数据的强大方法。然而,sci-RNA-seq 是一个复杂的协议,在不同的组织上表现出不同的性能,并且比替代方法的灵敏度更低。在这里,我们报告了 sci-RNA-seq 协议的简化、优化版本,该版本具有三轮拆分池索引,比原始协议更快、更稳健、更灵敏,产量更高,每个细胞的试剂成本约为 1 美分或更低。从细胞核分离到最终文库制备的总实际操作时间为 2-3 天,具体取决于共享实验的样本数量。这些改进还允许对富含 RNase 的组织(如较老的小鼠胚胎或原始方法有问题的成年组织)进行 RNA 分析。我们通过对 E16.5 小鼠胚胎的全器官分析展示了优化后的协议,在单个实验中对约 380,000 个细胞核进行了分析。最后,我们引入了一种“Tiny-Sci”协议,用于输入材料非常有限的实验。

相似文献

1
Optimized single-nucleus transcriptional profiling by combinatorial indexing.
Nat Protoc. 2023 Jan;18(1):188-207. doi: 10.1038/s41596-022-00752-0. Epub 2022 Oct 19.
2
Scalable dual-omics profiling with single-nucleus chromatin accessibility and mRNA expression sequencing 2 (SNARE-seq2).
Nat Protoc. 2021 Nov;16(11):4992-5029. doi: 10.1038/s41596-021-00507-3. Epub 2021 Oct 14.
3
Plant Nuclei Isolation for Single-Nucleus RNA Sequencing.
Methods Mol Biol. 2023;2686:307-311. doi: 10.1007/978-1-0716-3299-4_15.
4
Mouse kidney nuclear isolation and library preparation for single-cell combinatorial indexing RNA sequencing.
STAR Protoc. 2022 Dec 16;3(4):101904. doi: 10.1016/j.xpro.2022.101904. Epub 2022 Dec 5.
5
An optimized protocol for single nuclei isolation from clinical biopsies for RNA-seq.
Sci Rep. 2022 Jun 14;12(1):9851. doi: 10.1038/s41598-022-14099-9.
7
Comprehensive single-cell transcriptional profiling of a multicellular organism.
Science. 2017 Aug 18;357(6352):661-667. doi: 10.1126/science.aam8940.
9
Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding.
Science. 2018 Apr 13;360(6385):176-182. doi: 10.1126/science.aam8999. Epub 2018 Mar 15.
10
An optimized protocol for retina single-cell RNA sequencing.
Mol Vis. 2020 Oct 10;26:705-717. eCollection 2020.

引用本文的文献

1
Human-specific gene expansions contribute to brain evolution.
Cell. 2025 Jul 18. doi: 10.1016/j.cell.2025.06.037.
2
Multiplexed single-cell transcriptomics reveals diverse phenotypic outcomes for pathogenic SHP2 variants.
bioRxiv. 2025 Jul 2:2025.06.30.662374. doi: 10.1101/2025.06.30.662374.
3
Characterization of human CMV-specific CD8 T cells using multi-layer single-cell omics.
Cell Rep Methods. 2025 Jul 21;5(7):101085. doi: 10.1016/j.crmeth.2025.101085. Epub 2025 Jun 23.
4
A Toolkit for Single-Nucleus Characterization of Glioblastoma.
Methods Mol Biol. 2025;2944:227-237. doi: 10.1007/978-1-0716-4654-0_18.
5
Lineage recording in monoclonal gastruloids reveals heritable modes of early development.
bioRxiv. 2025 May 23:2025.05.23.655664. doi: 10.1101/2025.05.23.655664.
7
Organism-wide cellular dynamics and epigenomic remodeling in mammalian aging.
bioRxiv. 2025 May 15:2025.05.12.653376. doi: 10.1101/2025.05.12.653376.
8
High-resolution transcriptome analysis on a mouse model of neonatal hypoxic-ischemic encephalopathy using single-nucleus RNA-seq.
Biochem Biophys Rep. 2025 Apr 28;42:102026. doi: 10.1016/j.bbrep.2025.102026. eCollection 2025 Jun.

本文引用的文献

1
Systematic reconstruction of cellular trajectories across mouse embryogenesis.
Nat Genet. 2022 Mar;54(3):328-341. doi: 10.1038/s41588-022-01018-x. Epub 2022 Mar 14.
2
SCITO-seq: single-cell combinatorial indexed cytometry sequencing.
Nat Methods. 2021 Aug;18(8):903-911. doi: 10.1038/s41592-021-01222-3. Epub 2021 Aug 5.
3
Embryo-scale, single-cell spatial transcriptomics.
Science. 2021 Jul 2;373(6550):111-117. doi: 10.1126/science.abb9536.
4
Ultra-high-throughput single-cell RNA sequencing and perturbation screening with combinatorial fluidic indexing.
Nat Methods. 2021 Jun;18(6):635-642. doi: 10.1038/s41592-021-01153-z. Epub 2021 May 31.
5
A human cell atlas of fetal gene expression.
Science. 2020 Nov 13;370(6518). doi: 10.1126/science.aba7721.
6
A human cell atlas of fetal chromatin accessibility.
Science. 2020 Nov 13;370(6518). doi: 10.1126/science.aba7612.
7
Sci-fate characterizes the dynamics of gene expression in single cells.
Nat Biotechnol. 2020 Aug;38(8):980-988. doi: 10.1038/s41587-020-0480-9. Epub 2020 Apr 13.
8
Massively multiplex chemical transcriptomics at single-cell resolution.
Science. 2020 Jan 3;367(6473):45-51. doi: 10.1126/science.aax6234. Epub 2019 Dec 5.
9
High-Throughput Single-Cell Sequencing with Linear Amplification.
Mol Cell. 2019 Nov 21;76(4):676-690.e10. doi: 10.1016/j.molcel.2019.08.002. Epub 2019 Sep 5.
10
CoBATCH for High-Throughput Single-Cell Epigenomic Profiling.
Mol Cell. 2019 Oct 3;76(1):206-216.e7. doi: 10.1016/j.molcel.2019.07.015. Epub 2019 Aug 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验