Pilet Fabian, Loiseau Marianne, Boyer Claudine, Cavalier Aurore, Diman Christiane
CIRAD, 27050, UMR PVBMT, Saint-Pierre, Réunion;
ANSES-LSV, Virology and Phytoplasmology team, 7 rue Jean Dixméras, ANGERS cedex 01, France, 49044;
Plant Dis. 2022 Oct 20. doi: 10.1094/PDIS-08-22-1898-PDN.
Lethal Yellowing (LY) disease causes major damage to palms in Central America and the Caribbean. It has been reported as far south as Antigua (Myrie et al., 2014). LY affects over forty palm species, seriously impacts the coconut industry and alters the landscapes on islands with a tourist-based economy. In March 2021, the presence of LY disease was regularly monitored in Guadeloupe. Two palm species ( and ) died on a private property in Saint-Anne, Grande Terre. Yellowing of lower fronds and necrosis of inflorescences were reported on some neighboring palms. One symptomatic (GP21-007) and four symptomatic (GP21-005, GP21-006, GP21-008 and GP21-009) were sampled by stem drilling. Samples from four asymptomatic coconut trees (GP21-001 to GP21-004) were collected in the locality of Deshaies. DNA was extracted from the nine sawdust samples following a cetyltrimethylammonium bromide (CTAB) modified protocol (Doyle and Doyle, 1990). A quantitative polymerase chain reaction (PCR), following the protocol described by Christensen et al. (2004), was performed on DNA to diagnose the presence of phytoplasmas. An exponential amplification was observed for all DNA extracts from symptomatic palm samples (threshold number of PCR cycles (Ct) ranged from 18.50 to 23.58). DNA from asymptomatic samples yielded negative results (undetermined Ct). To identify the phytoplasma associated with LY, DNA samples were subjected to PCR, based on the 16SrRNA gene, plus internal transcribed spacers (ITS) using P1-1T (Pilet et al., 2021)/P7 (Schneider et al., 1995) primers, and A gene using the primer pair secAFor1/secARev1 (Hodgetts et al. 2008). Amplicons of 1.8 kb covering the 16S ribosomal operon and 830 bp for the A gene were produced using DNA from symptomatic trees. All amplicons were double strand sequenced (Genewiz, UK). The corresponding sequences were deposited in GenBank and subjected to BLASTn on NCBI. Sequences of the ribosomal operon gene (accession no. ON521114 to ON521118) were identical for the five positive samples. Sequencing revealed two distinct ribosomal operons with heterozygous peaks on the DNA chromatogram. The first aMino ambiguity (M = Adenine or Cytosine) was observed in the 16Sr RNA gene. The second was observed in the first intergenic transcript spacer. The 16S rDNA sequence (M = Cytosine) presented 100% identity with accession no. HQ613874 and 99.93% with accession no. U18747, the reference sequence for ' Phytoplasma palmae'. The virtual RFLP pattern derived from the 16S rDNA F2nR2 fragment and identified using iPhyclassifier (Zhao et al. 2009) was identical to the reference pattern for the 16SrIV-A subgroup. A unique sequence was obtained for the partial secA gene (OP136139 to OP136143), sharing 100% identity with EU267187 for the palm LY phytoplasma preprotein translocase subunit (secA) gene. This is the first report of ' Phytoplasma palmae' (subgroup 16SrIV-A) associated with palm LY disease on Cocos nucifera and Pritchardia sp. in Guadeloupe. Measures to eradicate LY were implemented as soon as its presence was confirmed in Guadeloupe. LY phytoplasmas continue to spread in the Caribbean and are approaching South America, where the known vector, , has already been reported (Silva et al., 2019). This poses a major threat to the coconut economy and the diversity of palm trees.
致死性黄化病(LY)对中美洲和加勒比地区的棕榈树造成了严重破坏。据报道,其影响范围已南至安提瓜岛(Myrie等人,2014年)。LY病影响着四十多种棕榈树种,严重冲击了椰子产业,并改变了以旅游业为经济支柱的岛屿景观。2021年3月,瓜德罗普岛定期监测LY病的存在情况。在大特里亚尔岛圣安妮的一处私人地产上,有两种棕榈树( 和 )死亡。一些相邻的棕榈树出现了下部叶片发黄和花序坏死的情况。通过茎部钻孔采集了一株有症状的 (GP21 - 007)和四株有症状的 (GP21 - 005、GP21 - 006、GP21 - 008和GP21 - 009)样本。在德沙伊地区采集了四株无症状椰子树(GP21 - 001至GP21 - 004)的样本。按照十六烷基三甲基溴化铵(CTAB)改良方案(Doyle和Doyle,1990年)从九个木屑样本中提取DNA。根据Christensen等人(2004年)描述的方案,对DNA进行定量聚合酶链反应(PCR)以诊断植原体的存在情况。对有症状棕榈树样本的所有DNA提取物均观察到指数扩增(PCR循环阈值数(Ct)范围为18.50至23.58)。无症状样本的DNA检测结果为阴性(Ct值未确定)。为鉴定与LY相关的植原体,基于16SrRNA基因加上内部转录间隔区(ITS),使用P1 - 1T(Pilet等人,2021年)/P7(Schneider等人,1995年)引物对DNA样本进行PCR,并使用引物对secAFor1/secARev1(Hodgetts等人,2008年)对A基因进行PCR。使用有症状树木的DNA扩增出了覆盖16S核糖体操纵子的1.8 kb片段和A基因的830 bp片段。所有扩增产物均进行双链测序(英国Genewiz公司)。相应序列存入GenBank并在NCBI上进行BLASTn比对。五个阳性样本的核糖体操纵子基因序列(登录号ON521114至ON521118)相同。测序显示在DNA色谱图上有两个不同的核糖体操纵子且带有杂合峰。在16SrRNA基因中首次观察到第一个碱基歧义(M = 腺嘌呤或胞嘧啶)。第二个在第一个基因间转录间隔区观察到。16S rDNA序列(M = 胞嘧啶)与登录号HQ613874的序列100%相同,与“棕榈植原体”的参考序列登录号U18747的序列相似度为99.93%。从16S rDNA F2nR2片段获得并使用iPhyclassifier(Zhao等人,2009年)鉴定的虚拟RFLP模式与16SrIV - A亚组的参考模式相同。部分secA基因获得了唯一序列(OP136139至OP136143),与棕榈LY植原体前体蛋白转运酶亚基(secA)基因EU267187的序列100%相同。这是在瓜德罗普岛的椰子树和普里查德棕上首次报道与棕榈LY病相关的“棕榈植原体”(16SrIV - A亚组)。在瓜德罗普岛确认LY病存在后,立即采取了根除措施。LY植原体继续在加勒比地区传播,并正向南美洲逼近,在南美洲已知的传播媒介 已被报道(Silva等人,2019年)。这对椰子经济和棕榈树的多样性构成了重大威胁。