Suppr超能文献

木质素磺酸盐基胺功能化磁性微球用于工业废水净化。

Amine-functionalized magnetic microspheres from lignosulfonate for industrial wastewater purification.

机构信息

College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.

Guangdong Yeanovo Environmental Corp., Ltd. China.

出版信息

Int J Biol Macromol. 2023 Jan 1;224:133-142. doi: 10.1016/j.ijbiomac.2022.10.110. Epub 2022 Oct 18.

Abstract

Amine-functionalized magnetic microspheres (LS-Fe-NMA) were successfully prepared from lignosulfonate by magnetization and amine modification to remove Cr(VI) from industrial wastewater. In addition to SEM, FTIR, XPS, magnetic hysteresis curves and other characterizations, the adsorption tests were performed in real Cr(VI)-containing industrial wastewater. The experimental influencing factors, such as adsorbent types, LS content in the composites, adsorption time, dosages of adsorbent and adsorption temperature were systematically explored. The results of adsorption models fitting proved that the adsorption conformed to the Langmuir model and the pseudo-second-order kinetic model. At 45 °C, the calculated equilibrium adsorption amount by LS-Fe-NMA in industrial wastewater was 642.11 mg/g. In addition, the adsorption process followed the principle of spontaneous endothermic reaction. It was found that electrostatic interaction, redox and complexation existed during the adsorption process. The excellent adsorption performance and reusability of LS-Fe-NMA for Cr(VI) demonstrates its practical application value in real Cr(VI)-containing industrial wastewater.

摘要

由木质素磺酸盐通过磁化和胺化改性制备了胺功能化磁性微球(LS-Fe-NMA),以去除工业废水中的六价铬。除了 SEM、FTIR、XPS、磁滞回线等表征外,还在实际含 Cr(VI)的工业废水中进行了吸附试验。系统研究了吸附试验的影响因素,如吸附剂类型、复合材料中木质素磺酸盐的含量、吸附时间、吸附剂用量和吸附温度等。吸附模型拟合结果表明,吸附符合朗缪尔模型和准二级动力学模型。在 45°C 下,LS-Fe-NMA 在工业废水中的计算平衡吸附量为 642.11mg/g。此外,吸附过程遵循自发吸热反应的原理。研究发现,在吸附过程中存在静电相互作用、氧化还原和络合作用。LS-Fe-NMA 对 Cr(VI) 具有优异的吸附性能和可重复使用性,表明其在实际含 Cr(VI)工业废水中具有实用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验