Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316022, China.
Environ Pollut. 2022 Dec 15;315:120469. doi: 10.1016/j.envpol.2022.120469. Epub 2022 Oct 19.
To enhance the biological degradation of volatile organic sulfur compounds, a microbial fuel cell (MFC) system with superior activity is developed for dimethyl disulfide (DMDS) degradation. The MFC achieves a removal efficiency near 100% within 6 h (initial concentration: 90 mg L) and a maximum biodegradation rate constant of 0.743 mM h. The DMDS removal load attains 2.684 mmol h L, which is 6.18-2440 times the loads of conventional biodegradation processes reported. Meanwhile, the maximum power density output and corresponding current density output are 5.40 W m and 40.6 A m, respectively. The main mechanism of extracellular electron transfer is classified as mediated electron transfer, supplemented by direct transfer. Furthermore, the mass balance analysis indicates that methanethiol, S, S, SO, HCHO, and CO are the main intermediate and end products involved in the hybrid metabolism pathway of DMDS. Overall, these findings may offer basic information for bioelectrochemical degradation of DMDS and facilitate the application of MFC in waste gas treatment. ENVIRONMENTAL IMPLICATION: Dimethyl disulfide (DMDS), which features poor solubility, odorous smell, and refractory property, is a typical pollutant emitted from the petrochemical industry. For the first time, we develop an MFC system for DMDS degradation. The superior DMDS removal load per unit reactor volume is 6.18-2440 times those of conventional biodegradation processes in literature. Both the electron transfer route and the hybrid metabolism pathway of DMDS are cleared in this work. Overall, these findings give an in-depth understanding of the bioelectrochemical DMDS degradation mechanism and provide an efficient alternative for DMDS removal.
为了增强挥发性有机硫化合物的生物降解能力,开发了一种具有优异活性的微生物燃料电池(MFC)系统,用于二甲基二硫(DMDS)降解。该 MFC 在 6 小时内(初始浓度:90mg/L)实现了近 100%的去除效率和 0.743mM/h 的最大生物降解速率常数。DMDS 的去除负荷达到 2.684mmol/h·L,是传统生物降解过程报道的负荷的 6.18-2440 倍。同时,最大功率密度输出和相应的电流密度输出分别为 5.40W/m 和 40.6A/m。细胞外电子传递的主要机制被归类为介导电子传递,辅以直接传递。此外,质量平衡分析表明,甲硫醇、S、S、SO、HCHO 和 CO 是 DMDS 混合代谢途径中涉及的主要中间和最终产物。总的来说,这些发现可能为 DMDS 的生物电化学降解提供基础信息,并促进 MFC 在废气处理中的应用。
二甲基二硫(DMDS)具有溶解度差、气味难闻和难处理等特点,是石化工业排放的一种典型污染物。我们首次开发了一种用于 DMDS 降解的 MFC 系统。单位反应器体积的优越 DMDS 去除负荷是文献中传统生物降解过程的 6.18-2440 倍。在这项工作中,DMDS 的电子转移途径和混合代谢途径都被阐明了。总的来说,这些发现深入了解了生物电化学 DMDS 降解机制,并为 DMDS 的去除提供了一种有效的替代方法。