Dyson School of Design Engineering, Imperial College London, London, SW7 2DB, UK.
Sci Data. 2022 Oct 22;9(1):645. doi: 10.1038/s41597-022-01744-1.
3D microstructural datasets are commonly used to define the geometrical domains used in finite element modelling. This has proven a useful tool for understanding how complex material systems behave under applied stresses, temperatures and chemical conditions. However, 3D imaging of materials is challenging for a number of reasons, including limited field of view, low resolution and difficult sample preparation. Recently, a machine learning method, SliceGAN, was developed to statistically generate 3D microstructural datasets of arbitrary size using a single 2D input slice as training data. In this paper, we present the results from applying SliceGAN to 87 different microstructures, ranging from biological materials to high-strength steels. To demonstrate the accuracy of the synthetic volumes created by SliceGAN, we compare three microstructural properties between the 2D training data and 3D generations, which show good agreement. This new microstructure library both provides valuable 3D microstructures that can be used in models, and also demonstrates the broad applicability of the SliceGAN algorithm.
3D 微观结构数据集通常用于定义有限元建模中使用的几何域。这已被证明是一种有用的工具,可以了解复杂材料系统在施加的应力、温度和化学条件下的行为。然而,由于多种原因,材料的 3D 成像具有挑战性,包括有限的视场、低分辨率和困难的样品制备。最近,一种机器学习方法 SliceGAN 被开发出来,该方法可以使用单个 2D 输入切片作为训练数据,从统计学上生成任意大小的 3D 微观结构数据集。在本文中,我们展示了将 SliceGAN 应用于 87 种不同微观结构的结果,这些微观结构包括生物材料和高强度钢。为了证明 SliceGAN 生成的合成体积的准确性,我们比较了 2D 训练数据和 3D 生成数据之间的三个微观结构特性,结果显示吻合较好。这个新的微观结构库不仅提供了可用于模型的有价值的 3D 微观结构,还展示了 SliceGAN 算法的广泛适用性。