Guo Qiaohang, Yan Jiuwei, Wu Changsheng, Jiang Junheng, Zhou Jiahao, Lin Zhijie, Hua Nengbin, Zhang Peiqian, Zheng Chan, Yang Kaihuai, Weng Mingcen
School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Fujian University of Technology, Fuzhou350118, China.
School of Mechanical and Intelligent Manufacturing, Fujian Chuanzheng Communications College, Fuzhou, Fujian350007, China.
ACS Appl Mater Interfaces. 2022 Nov 2;14(43):49171-49180. doi: 10.1021/acsami.2c14352. Epub 2022 Oct 23.
Recently, soft actuators capable of deforming in predictable ways under external stimuli have attracted increasing attention by showing great potential in emerging industries. However, limited efforts are being spent on the untethered actuators with multistable deformations. Also, there is a lack of mechanically guiding design principles for multistable structures. Here, the patterned aluminum/polydimethylsiloxane (Al/PDMS)-laminated films with surface wrinkles are fabricated by magnetron sputtering the Al layer on the PDMS substrate. By tuning the geometric parameters and surface constraints of the patterned Al/PDMS-laminated films, a series of solvent-driven actuators with multiform stable configurations (such as monostable arc, multistable cylinder, and monostable/bistable spiral) are proposed. The deformation mechanism is revealed using a linear elastic theory. Combined with the finite element analysis method, the deformations of Al/PDMS-laminated films with different surface constraints and geometric configurations are visually predicted. Besides, we modulate the deformation of different parts of the Z-shaped actuators by tuning the surface constraints in different regions of the Z-shaped Al/PDMS bilayer films to achieve multiple stable deformations in a single actuator. The concept offers a huge design scope for reconfigurable soft robots. Finally, two bionic applications are proposed to demonstrate the practical applications of the soft solvent-driven actuator based on the patterned Al/PDMS films in artificial muscles and bionic robotics. This work provides a strategy for the design and fabrication of programmable and controllable soft actuators, laying the foundation for a wide range of applications in smart materials.
最近,能够在外部刺激下以可预测方式变形的软致动器因其在新兴产业中展现出的巨大潜力而受到越来越多的关注。然而,对于具有多稳态变形的无系绳致动器的研究投入有限。此外,缺乏针对多稳态结构的机械引导设计原则。在此,通过在聚二甲基硅氧烷(PDMS)基板上磁控溅射铝(Al)层,制备了具有表面皱纹的图案化铝/聚二甲基硅氧烷(Al/PDMS)层压薄膜。通过调整图案化Al/PDMS层压薄膜的几何参数和表面约束条件,提出了一系列具有多种稳定构型(如单稳态弧、多稳态圆柱和单稳态/双稳态螺旋)的溶剂驱动致动器。利用线性弹性理论揭示了其变形机制。结合有限元分析方法,直观地预测了具有不同表面约束和几何构型的Al/PDMS层压薄膜的变形情况。此外,通过调整Z形Al/PDMS双层薄膜不同区域的表面约束条件,我们调节了Z形致动器不同部分的变形,从而在单个致动器中实现多种稳定变形。这一概念为可重构软机器人提供了广阔的设计空间。最后,提出了两个仿生应用实例,以展示基于图案化Al/PDMS薄膜的软溶剂驱动致动器在人造肌肉和仿生机器人技术中的实际应用。这项工作为可编程和可控软致动器的设计与制造提供了一种策略,为智能材料的广泛应用奠定了基础。