De-Groot Reuma, Golumbic Yaela N, Martínez Martínez Fernando, Hoppe H Ulrich, Reynolds Sally
MOFET Institute - Research Center, Tel-Aviv, Israel.
The Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel.
Front Res Metr Anal. 2022 Oct 5;7:988544. doi: 10.3389/frma.2022.988544. eCollection 2022.
Over the past decade, Citizen Science (CS) has shown great potential to transform the power of the crowd into knowledge of societal value. Many projects and initiatives have produced high quality scientific results by mobilizing peoples' interest in science to volunteer for the public good. Few studies have attempted to map citizen science as a field, and assess its impact on science, society and ways to sustain its future practice. To better understand CS activities and characteristics, CS Track employs an analytics and analysis framework for monitoring the citizen science landscape. Within this framework, CS Track collates and processes information from project websites, platforms and social media and generates insights on key issues of concern to the CS community, such as participation patterns or impact on science learning. In this paper, we present the operationalization of the CS Track framework and its three-level analysis approach (micro-meso-macro) for applying analytics techniques to external data sources. We present three case studies investigating the CS landscape using these analytical levels and discuss the strengths and limitations of combining web-analytics with quantitative and qualitative research methods. This framework aims to complement existing methods for evaluating CS, address gaps in current observations of the citizen science landscape and integrate findings from multiple studies and methodologies. Through this work, CS Track intends to contribute to the creation of a measurement and evaluation scheme for CS and improve our understanding about the potential of analytics for the evaluation of CS.
在过去十年中,公民科学(CS)已展现出将大众力量转化为具有社会价值的知识的巨大潜力。许多项目和倡议通过激发人们对科学的兴趣,动员他们为公共利益做志愿者,从而取得了高质量的科学成果。很少有研究试图描绘公民科学这一领域,并评估其对科学、社会的影响以及维持其未来实践的方式。为了更好地理解公民科学活动及其特征,公民科学追踪(CS Track)采用了一个分析框架来监测公民科学领域。在此框架内,公民科学追踪整理并处理来自项目网站、平台和社交媒体的信息,并就公民科学社区关注的关键问题得出见解,例如参与模式或对科学学习的影响。在本文中,我们介绍了公民科学追踪框架的实施及其用于将分析技术应用于外部数据源的三级分析方法(微观 - 中观 - 宏观)。我们展示了三个使用这些分析层面来研究公民科学领域的案例研究,并讨论了将网络分析与定量和定性研究方法相结合的优势与局限性。该框架旨在补充现有的公民科学评估方法,填补当前公民科学领域观察中的空白,并整合来自多项研究和方法的结果。通过这项工作,公民科学追踪旨在为创建公民科学的测量与评估方案做出贡献,并增进我们对分析技术在公民科学评估方面潜力的理解。