Biomedical Sciences Department, Faculty of Medicine, Arab American University of Palestine, Jenin P227, Palestine.
Department of Clinical and Biomedical Science, University of Exeter Faculty of Health and Life Science, RILD building, Barrack Road, Exeter EX2 5DW, UK; Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust (Heavitree Hospital), Gladstone Road, Exeter EX1 2ED, UK.
Am J Hum Genet. 2022 Nov 3;109(11):2068-2079. doi: 10.1016/j.ajhg.2022.09.012. Epub 2022 Oct 24.
Non-centrosomal microtubules are essential cytoskeletal filaments that are important for neurite formation, axonal transport, and neuronal migration. They require stabilization by microtubule minus-end-targeting proteins including the CAMSAP family of molecules. Using exome sequencing on samples from five unrelated families, we show that bi-allelic CAMSAP1 loss-of-function variants cause a clinically recognizable, syndromic neuronal migration disorder. The cardinal clinical features of the syndrome include a characteristic craniofacial appearance, primary microcephaly, severe neurodevelopmental delay, cortical visual impairment, and seizures. The neuroradiological phenotype comprises a highly recognizable combination of classic lissencephaly with a posterior more severe than anterior gradient similar to PAFAH1B1(LIS1)-related lissencephaly and severe hypoplasia or absence of the corpus callosum; dysplasia of the basal ganglia, hippocampus, and midbrain; and cerebellar hypodysplasia, similar to the tubulinopathies, a group of monogenic tubulin-associated disorders of cortical dysgenesis. Neural cell rosette lineages derived from affected individuals displayed findings consistent with these phenotypes, including abnormal morphology, decreased cell proliferation, and neuronal differentiation. Camsap1-null mice displayed increased perinatal mortality, and RNAScope studies identified high expression levels in the brain throughout neurogenesis and in facial structures, consistent with the mouse and human neurodevelopmental and craniofacial phenotypes. Together our findings confirm a fundamental role of CAMSAP1 in neuronal migration and brain development and define bi-allelic variants as a cause of a clinically distinct neurodevelopmental disorder in humans and mice.
非中心体微管是重要的细胞骨架丝,对于轴突形成、轴突运输和神经元迁移至关重要。它们需要微管负端靶向蛋白的稳定,包括 CAMSAP 家族分子。我们使用来自五个无关家族的样本进行外显子组测序,表明 CAMSAP1 双等位基因功能丧失变异导致可识别的、综合征性的神经元迁移障碍。该综合征的主要临床特征包括特征性的颅面外观、原发性小头畸形、严重的神经发育迟缓、皮质视觉障碍和癫痫发作。神经影像学表型包括经典无脑回合并后部比前部严重的高度可识别组合,类似于与 PAFAH1B1(LIS1)相关的无脑回;胼胝体严重发育不良或缺失;基底节、海马体和中脑发育不良;小脑发育不良,类似于微管病,这是一组与微管相关的皮质发育不良的单基因疾病。源自受影响个体的神经细胞玫瑰花结谱系显示出与这些表型一致的发现,包括异常形态、细胞增殖减少和神经元分化。Camsap1 敲除小鼠显示出增加的围产期死亡率,并且 RNAScope 研究在整个神经发生过程中和面部结构中鉴定到大脑中的高表达水平,这与小鼠和人类的神经发育和颅面表型一致。总之,我们的研究结果证实了 CAMSAP1 在神经元迁移和大脑发育中的基本作用,并将双等位基因变异定义为人类和小鼠中一种具有独特临床表型的神经发育障碍的原因。