Universite de Pau et des Pays de L'Adour / E2S UPPA, CNRS, Institut des Sciences Analytiques et de Physico-chimie pour L'Environnement et Les Materiaux, UMR5254, Helioparc, 64053 Pau, France; Kimika Analitikoa Saila, Euskal Herriko Unibertsitatea UPV/EHU, Sarriena Auzoa Z/g, 48940 Leioa (Basque Country).
Universite de Pau et des Pays de L'Adour / E2S UPPA, CNRS, Institut des Sciences Analytiques et de Physico-chimie pour L'Environnement et Les Materiaux, UMR5254, Helioparc, 64053 Pau, France.
Environ Res. 2023 Jan 1;216(Pt 2):114611. doi: 10.1016/j.envres.2022.114611. Epub 2022 Oct 22.
While mercury (Hg) is a major concern in all aquatic environments because of its methylation and biomagnification pathways, very few studies consider Hg cycling in remote alpine lakes which are sensitive ecosystems. Nineteen high-altitude pristine lakes from Western/Central Pyrenees were investigated on both northern (France) and southern (Spain) slopes (1620-2600 m asl.). Subsurface water samples were collected in June 2017/2018/2019 and October 2017/2018 for Hg speciation analysis of inorganic mercury (iHg(II)), monomethylmercury (MMHg), and dissolved gaseous mercury (DGM) to investigate spatial and seasonal variations. In June 2018/2019 and October 2018, more comprehensive studies were performed in four lakes by taking water column depth profiles. Besides, in-situ incubation experiments using isotopically enriched Hg species (iHg(II), MMHg) were conducted to investigate Hg transformation mechanisms in the water column. While iHg(II) (0.08-1.10 ng L in filtered samples; 0.11-1.19 ng L in unfiltered samples) did not show significant seasonal variations in the subsurface water samples, MMHg (<0.03-0.035 ng L in filtered samples; <0.03-0.062 ng L in unfiltered samples) was significantly higher in October 2018, mainly because of in-situ methylation. DGM (0.02-0.68 ng L) varies strongly and can exhibit higher levels in comparison with other pristine areas. Depth profiles and incubation experiments highlighted the importance of in-situ biotic methylation triggered by anoxic conditions in bottom waters. In-situ incubations confirm that significant methylation, demethylation and photoreduction extents are taking place in the water columns. Overall, drastic environmental changes occurring daily and seasonally in alpine lakes are providing conditions that can both promote Hg methylation (stratified anoxic waters) and MMHg photodemethylation (intense UV light). In addition, light induced photoreduction is a major pathway controlling significant gaseous Hg evasion. Global warming and potential eutrophication may thus have direct implications on Hg turnover and MMHg burden in those remote ecosystems.
虽然汞(Hg)因其甲基化和生物放大途径而成为所有水生环境中的主要关注点,但很少有研究考虑到敏感生态系统的偏远高山湖泊中的 Hg 循环。本研究对比利牛斯山西部/中部的 19 个高海拔原始湖泊(海拔 1620-2600 米)进行了调查,包括法国北部和西班牙南部的斜坡。2017 年 6 月/2018 年 6 月/2019 年 6 月和 2017 年 10 月/2018 年 10 月采集了次表层水样,用于分析无机汞(iHg(II))、一甲基汞(MMHg)和溶解气态汞(DGM)的 Hg 形态,以调查空间和季节性变化。2018 年 6 月/2019 年 6 月和 2018 年 10 月,在四个湖泊中进行了更全面的研究,包括采集水柱深度剖面。此外,还进行了使用同位素富集 Hg 物种(iHg(II)、MMHg)的原位培养实验,以研究水柱中 Hg 的转化机制。尽管 iHg(II)(过滤样品中为 0.08-1.10ngL;未过滤样品中为 0.11-1.19ngL)在次表层水样中没有明显的季节性变化,但 MMHg(过滤样品中为 0.03-0.035ngL;未过滤样品中为 0.03-0.062ngL)在 2018 年 10 月显著升高,主要是由于原位甲基化。DGM(0.02-0.68ngL)变化强烈,与其他原始地区相比,其含量可能更高。深度剖面和培养实验强调了底部水缺氧条件下原位生物甲基化的重要性。原位培养实验证实,水柱中发生了显著的甲基化、去甲基化和光还原作用。总体而言,高山湖泊中每天和季节性发生的剧烈环境变化为 Hg 甲基化(分层缺氧水)和 MMHg 光去甲基化(强烈的 UV 光)提供了条件。此外,光诱导的光还原是控制大量气态 Hg 逸出的主要途径。因此,全球变暖以及潜在的富营养化可能会直接影响这些偏远生态系统中的 Hg 周转和 MMHg 负荷。