Coughlin Aeran O, Wooliver Rachel, Sheth Seema N
Department of Plant and Microbial Biology North Carolina State University Raleigh North Carolina USA.
Present address: Department of Biology Duke University Durham North Carolina USA.
Ecol Evol. 2022 Oct 22;12(10):e9434. doi: 10.1002/ece3.9434. eCollection 2022 Oct.
Niche breadth, the range of environments that individuals, populations, and species can tolerate, is a fundamental ecological and evolutionary property, yet few studies have examined how niche breadth is partitioned across biological scales. We use a published dataset of thermal performance for a single population from each of 10 closely related species of western North American monkeyflowers (genus ) to investigate whether populations achieve broad thermal niches through general purpose genotypes, specialized genotypes with divergent environmental optima, and/or variation among genotypes in the degree of generalization. We found the strongest relative support for the hypothesis that populations with greater genetic variation for thermal optimum had broader thermal niches, and for every unit increase in among-family variance in thermal optimum, population-level thermal breadth increased by 0.508°C. While the niche breadth of a single genotype represented up to 86% of population-level niche breadth, genotype-level niche breadth had a weaker positive effect on population-level breadth, with every 1°C increase in genotypic thermal breadth resulting in a 0.062°C increase in population breadth. Genetic variation for thermal breadth was not predictive of population-level thermal breadth. These findings suggest that populations of species have achieved broad thermal niches primarily through genotypes with divergent thermal optima and to a lesser extent via general-purpose genotypes. Future work examining additional biological hierarchies would provide a more comprehensive understanding of how niche breadth partitioning impacts the vulnerabilities of individuals, populations, and species to environmental change.
生态位宽度是指个体、种群和物种能够耐受的环境范围,是一项基本的生态和进化属性,但很少有研究探讨生态位宽度是如何在生物尺度上进行划分的。我们使用了一个已发表的数据集,该数据集包含来自北美西部10种亲缘关系密切的猴面花属( 属)物种中每个物种的一个单一种群的热性能,以研究种群是否通过通用基因型、具有不同环境最适值的特化基因型和/或基因型在泛化程度上的变异来实现广泛的热生态位。我们发现,对于最适温度具有更大遗传变异的种群具有更广泛热生态位这一假设,得到了最强的相对支持,并且最适温度的家系间方差每增加一个单位,种群水平的热宽度就增加0.508°C。虽然单个基因型的生态位宽度占种群水平生态位宽度的比例高达86%,但基因型水平的生态位宽度对种群水平宽度的正向影响较弱,基因型热宽度每增加1°C,种群宽度增加0.062°C。热宽度的遗传变异并不能预测种群水平的热宽度。这些发现表明, 物种的种群主要通过具有不同热最适值的基因型,在较小程度上通过通用基因型实现了广泛的热生态位。未来研究其他生物层次结构的工作将更全面地理解生态位宽度划分如何影响个体、种群和物种对环境变化的脆弱性。