Scintillon Institute, San Diego, CA 92121.
Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA 94143.
Mol Biol Cell. 2022 Dec 1;33(14):br28. doi: 10.1091/mbc.E22-03-0092. Epub 2022 Oct 26.
Matrix stiffness and dimensionality have been shown to be major determinants of cell behavior. However, a workflow for examining nanometer-scale responses of the associated molecular machinery is not available. Here, we describe a comprehensive, quantitative workflow that permits the analysis of cells responding to mechanical and dimensionality cues in their native state at nanometer scale by cryogenic electron tomography. Using this approach, we quantified distinct cytoskeletal nanoarchitectures and vesicle phenotypes induced in human mammary epithelial cells in response to stiffness and dimensionality of reconstituted basement membrane. Our workflow closely recapitulates the microenvironment associated with acinar morphogenesis and identified distinct differences in situ at nanometer scale. Using drug treatment, we showed that molecular events and nanometer-scale rearrangements triggered by engagement of apical cell receptors with reconstituted basement membrane correspond to changes induced by reduction of cortical tension. Our approach is fully adaptable to any kind of stiffness regime, extracellular matrix composition, and drug treatment.
基质硬度和维度已被证明是细胞行为的主要决定因素。然而,目前还没有用于检查相关分子机制纳米级响应的工作流程。在这里,我们描述了一种全面的定量工作流程,该流程可通过低温电子断层扫描来分析在纳米尺度上以其自然状态响应机械和维度线索的细胞。使用这种方法,我们定量分析了人乳腺上皮细胞在响应重建基底膜的硬度和维度时所诱导的不同细胞骨架纳米结构和囊泡表型。我们的工作流程紧密再现了与腺泡形态发生相关的微环境,并在纳米尺度上原位识别出明显的差异。通过药物处理,我们表明,细胞顶端受体与重建基底膜的结合所触发的分子事件和纳米级重排与通过降低皮质张力所诱导的变化相对应。我们的方法完全适用于任何硬度范围、细胞外基质组成和药物处理。