Suppr超能文献

探索超宽带超材料吸收体在可见光和近红外区域的吸收光谱。

Exploring the Absorption Spectra of an Ultra-Wideband Metamaterial Absorber in the Visible and Near-Infrared Regions.

作者信息

Tharwat Marwa M, Alsulami Abdulaziz R, Mahros Amr M

机构信息

Department of Electrical Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

Department of Physics, University of Jeddah, Jeddah 21432, Saudi Arabia.

出版信息

Materials (Basel). 2022 Oct 14;15(20):7160. doi: 10.3390/ma15207160.

Abstract

This paper investigates the absorption spectra of a plasmonic metamaterial absorber in the visible and near-infrared regimes by utilizing a metal-dielectric-metal (MDM) functional stack. A periodic metal-dielectric cap is introduced on top of a metallic substrate to excite surface plasmon modes. The shape of this cap and the glass coating modifies the absorbance bandwidth. Although the circular cap exhibits less broadening in the absorbance than the square one, the circular cap's glass coating boosts the bandwidth's expansion in the near-infrared region to about 1.65 µm. In the visible and near-infrared regimes, absorption bandwidth and spectral ratio can be tailored by modifying four distinct structural parameters. The finding shows that one can achieve an ultra-broad bandwidth that extends from 0.3 µm to 1.65 µm at 90% absorbance. The thickness of the top titanium layer, the silicon dioxide spacer thickness, the Ti-SiO cap diameter, and the sliver substrate pitch are selected to be 20 nm, 60 nm, 215 nm, and 235 nm, respectively. Furthermore, the influence of using various metals on absorption spectra has been explored in the visible and near-infrared regimes. The d metals considered for the top layer are titanium, nickel, chromium, silver, copper, gold, aluminum, and gold.

摘要

本文利用金属-电介质-金属(MDM)功能堆栈研究了等离子体超材料吸收体在可见光和近红外波段的吸收光谱。在金属基底顶部引入周期性金属-电介质帽来激发表面等离子体模式。该帽的形状和玻璃涂层会改变吸收带宽。尽管圆形帽在吸收方面的展宽比方形帽小,但圆形帽的玻璃涂层在近红外区域将带宽扩展至约1.65 µm。在可见光和近红外波段,可通过修改四个不同的结构参数来调整吸收带宽和光谱比。研究结果表明,在90%吸收率下可实现从0.3 µm到1.65 µm的超宽带宽。顶部钛层的厚度、二氧化硅间隔层的厚度、Ti-SiO帽的直径和银基底的间距分别选定为20 nm、60 nm、215 nm和235 nm。此外,还在可见光和近红外波段探索了使用各种金属对吸收光谱的影响。考虑用于顶层的d族金属有钛、镍、铬、银、铜、金、铝和金。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a48/9605423/0c77e8ad149a/materials-15-07160-g001.jpg

相似文献

3
Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial.
Opt Express. 2018 Mar 5;26(5):5686-5693. doi: 10.1364/OE.26.005686.
5
Broadband infrared plasmonic metamaterial absorber with multipronged absorption mechanisms.
Opt Express. 2019 Sep 30;27(20):27917-27926. doi: 10.1364/OE.27.027917.
6
Performance enhancement due to a top dielectric coating on a metamaterial perfect absorber.
Appl Opt. 2020 Jun 10;59(17):E118-E125. doi: 10.1364/AO.388145.
7
A Designed Broadband Absorber Based on ENZ Mode Incorporating Plasmonic Metasurfaces.
Micromachines (Basel). 2019 Oct 4;10(10):673. doi: 10.3390/mi10100673.
8
An Infrared Ultra-Broadband Absorber Based on MIM Structure.
Nanomaterials (Basel). 2022 Oct 4;12(19):3477. doi: 10.3390/nano12193477.
9
Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation.
ACS Appl Mater Interfaces. 2015 Mar 4;7(8):4962-8. doi: 10.1021/acsami.5b00056. Epub 2015 Feb 23.
10
Ultra-broadband metamaterial absorber based on cross-shaped TiN resonators.
J Opt Soc Am A Opt Image Sci Vis. 2020 Apr 1;37(4):697-704. doi: 10.1364/JOSAA.389320.

本文引用的文献

2
Performance enhancement due to a top dielectric coating on a metamaterial perfect absorber.
Appl Opt. 2020 Jun 10;59(17):E118-E125. doi: 10.1364/AO.388145.
3
Detailed Experiment-Theory Comparison of Mid-Infrared Metasurface Perfect Absorbers.
Micromachines (Basel). 2020 Apr 14;11(4):409. doi: 10.3390/mi11040409.
4
Broadband infrared plasmonic metamaterial absorber with multipronged absorption mechanisms.
Opt Express. 2019 Sep 30;27(20):27917-27926. doi: 10.1364/OE.27.027917.
5
Recent Advances of Plasmonic Nanoparticles and their Applications.
Materials (Basel). 2018 Sep 26;11(10):1833. doi: 10.3390/ma11101833.
6
Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial.
Opt Express. 2018 Mar 5;26(5):5686-5693. doi: 10.1364/OE.26.005686.
7
Hyperbolic metamaterial antenna for second-harmonic generation tomography.
Opt Express. 2015 Nov 30;23(24):30730-8. doi: 10.1364/OE.23.030730.
8
An ultrathin invisibility skin cloak for visible light.
Science. 2015 Sep 18;349(6254):1310-4. doi: 10.1126/science.aac9411.
9
Broadband electromagnetic cloaking with smart metamaterials.
Nat Commun. 2012;3:1213. doi: 10.1038/ncomms2219.
10
Metamaterial electromagnetic wave absorbers.
Adv Mater. 2012 Jun 19;24(23):OP98-120, OP181. doi: 10.1002/adma.201200674. Epub 2012 May 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验