Joshi Sharmad, Gazmin Enrique, Glover Jayden, Weeks Nathan, Khan Fazeel, Iacono Scott, Corti Giancarlo
Department of Mechanical and Manufacturing Engineering, Miami University, Oxford, OH 45056, USA.
Department of Chemistry & Chemistry Research Center, United States Air Force Academy, Colorado Springs, CO 80840, USA.
Polymers (Basel). 2022 Oct 13;14(20):4312. doi: 10.3390/polym14204312.
Polyvinylidene fluoride (PVDF) presents highly useful piezo and pyro electric properties but they are predicated upon the processing methods and the ensuing volume fraction of the -phase. Production of PVDF with higher -phase content for additive manufacturing (AM) is particularly desirable because it can enable the creation of custom parts with enhanced properties. Necessary steps from compounding to the testing of a 3D printed piezo sensitive sensor are presented in this paper. AM process variables and the influence of zinc oxide (ZnO) nanofiller on crystallinity, viscosity, and electromechanical properties of PVDF, have been explored. Fourier-transform infrared spectroscopy (FTIR) measurements confirm that a high cooling rate (HCR) of 30 °C min promotes the conversion of the -into the -phase, reaching a maximum of 80% conversion with 7.5-12.5% ZnO content. These processing conditions increase the elastic modulus up to 40%, while maintaining the ultimate strength, ≈46 MPa. Furthermore, HCR 10% ZnO-PVDF produces four times higher volts per Newton when compared to low cooling rate, 5 °C min, pristine PVDF. A piezoelectric biomedical sensor application has been presented using HCR and ZnO nanofiller. This technique also reduces the need for post-poling which can reduce manufacturing time and cost.
聚偏氟乙烯(PVDF)具有非常有用的压电和热电性能,但这些性能取决于加工方法以及随后的β相体积分数。生产具有更高β相含量的PVDF用于增材制造(AM)尤为可取,因为这可以制造出具有增强性能的定制零件。本文介绍了从混合到3D打印压电敏感传感器测试的必要步骤。研究了增材制造工艺变量以及氧化锌(ZnO)纳米填料对PVDF结晶度、粘度和机电性能的影响。傅里叶变换红外光谱(FTIR)测量证实,30℃/min的高冷却速率(HCR)促进了α相向β相的转变,在ZnO含量为7.5-12.5%时,转变率最高可达80%。这些加工条件使弹性模量提高了40%,同时保持了约46MPa的极限强度。此外,与低冷却速率5℃/min的原始PVDF相比,HCR 10% ZnO-PVDF每牛顿产生的电压高出四倍。本文展示了一种使用HCR和ZnO纳米填料的压电生物医学传感器应用。该技术还减少了对后极化的需求,从而可以减少制造时间和成本。