Elistratova Anastasiia A, Gubarev Alexander S, Lezov Alexey A, Vlasov Petr S, Solomatina Anastasia I, Liao Yu-Chan, Chou Pi-Tai, Tunik Sergey P, Chelushkin Pavel S, Tsvetkov Nikolai V
Institute of Chemistry, St. Petersburg State University, Universitetskii Av., 26, 198504 St. Petersburg, Russia.
Department of Molecular Biophysics and Physics of Polymers, St. Petersburg State University, Universitetskaya nab., 7/9, 199034 St. Petersburg, Russia.
Polymers (Basel). 2022 Oct 16;14(20):4361. doi: 10.3390/polym14204361.
Despite the fact that amphiphilic block copolymers have been studied in detail by various methods both in common solvents and aqueous dispersions, their hydrodynamic description is still incomplete. In this paper, we present a detailed hydrodynamic study of six commercial diblock copolymers featuring the same hydrophilic block (poly(ethylene glycol), PEG; degree of polymerization is ca. 110 ± 25) and the following hydrophobic blocks: polystyrene, PS--PEG; poly(methyl methacrylate), PMMA--PEG; poly(1,4-butadyene), PBd--PEG; polyethylene PE--PEG; poly(dimethylsiloxane), PDMS--PEG; and poly(ɛ-caprolactone), PCL--PEG. The hydrodynamic properties of block copolymers are investigated in both an organic solvent (tetrahydrofuran) and in water micellar dispersions by the combination of static/dynamic light scattering, viscometry, and analytical ultracentrifugation. All the micellar dispersions demonstrate bimodal particle distributions: small compact (hydrodynamic redii, R ≤ 17 nm) spherical particles ascribed to "conventional" core-shell polymer micelles and larger particles ascribed to micellar clusters. Hydrodynamic invariants are (2.4 ± 0.4) × 10 g cm s K mol for all types of micelles used in the study. For aqueous micellar dispersions, in view of their potential biomedical applications, their critical micelle concentration values and cytotoxicities are also reported. The investigated micelles are stable towards precipitation, possess low critical micelle concentration values (with the exception of PDMS--PEG), and demonstrate low toxicity towards Chinese Hamster Ovarian (CHO-K1) cells.
尽管两亲性嵌段共聚物已经在普通溶剂和水性分散体系中通过各种方法进行了详细研究,但其流体动力学描述仍不完整。在本文中,我们对六种商业二嵌段共聚物进行了详细的流体动力学研究,这些共聚物具有相同的亲水嵌段(聚乙二醇,PEG;聚合度约为110±25)以及以下疏水嵌段:聚苯乙烯,PS-PEG;聚甲基丙烯酸甲酯,PMMA-PEG;聚1,4-丁二烯,PBd-PEG;聚乙烯,PE-PEG;聚二甲基硅氧烷,PDMS-PEG;以及聚己内酯,PCL-PEG。通过静态/动态光散射、粘度测定和分析超速离心相结合的方法,研究了嵌段共聚物在有机溶剂(四氢呋喃)和水胶束分散体系中的流体动力学性质。所有胶束分散体系均呈现双峰粒子分布:归因于“常规”核壳聚合物胶束的小而紧密(流体动力学半径,R≤17nm)的球形粒子以及归因于胶束聚集体的较大粒子。本研究中使用的所有类型胶束的流体动力学不变量为(2.4±0.4)×10 g cm s K mol。对于水性胶束分散体系,鉴于其潜在的生物医学应用,还报告了它们的临界胶束浓度值和细胞毒性。所研究的胶束对沉淀稳定,具有低临界胶束浓度值(聚二甲基硅氧烷-聚乙二醇除外),并且对中国仓鼠卵巢(CHO-K1)细胞显示出低毒性。