Suppr超能文献

用于失序姿态传感器测量的单纯形反向传播估计方法。

Simplex Back Propagation Estimation Method for Out-of-Sequence Attitude Sensor Measurements.

作者信息

Goh Shu Ting, Tissera M S C, Tan RongDe Darius, Srivastava Ankit, Low Kay-Soon, Lim Lip San

机构信息

Department of Electrical & Computer Engineering, National University of Singapore, Singapore 117583, Singapore.

出版信息

Sensors (Basel). 2022 Oct 19;22(20):7970. doi: 10.3390/s22207970.

Abstract

For a small satellite, the processor onboard the attitude determination and control system (ADCS) is required to monitor, communicate, and control all the sensors and actuators. In addition, the processor is required to consistently communicate with the satellite bus. Consequently, the processor is unable to ensure all the sensors and actuators will immediately respond to the data acquisition request, which leads to asynchronous data problems. The extended Kalman filter (EKF) is commonly used in the attitude determination process, but it assumes fully synchronous data. The asynchronous data problem would greatly degrade the attitude determination accuracy by EKF. To minimize the attitude estimation accuracy loss due to asynchronous data while ensuring a reasonable computational complexity for small satellite applications, this paper proposes the simplex-back-propagation Kalman filter (SBPKF). The proposed SBPKF incorporates the time delay, gyro instability, and navigation error into both the measurement and covariance estimation during the Kalman update process. The performance of SBPKF has been compared with EKF, modified adaptive EKF (MAEKF), and moving-covariance Kalman filter (MC-KF). Simulation results show that the attitude estimation error of SBPKF is at least 30% better than EKF and MC-KF. In addition, the SBPKF's computational complexity is 17% lower than MAEKF and 29% lower than MC-KF.

摘要

对于一颗小卫星而言,姿态确定与控制系统(ADCS)中的处理器需要对所有传感器和执行器进行监测、通信及控制。此外,该处理器还需持续与卫星总线进行通信。因此,处理器无法确保所有传感器和执行器能立即响应数据采集请求,这就导致了异步数据问题。扩展卡尔曼滤波器(EKF)在姿态确定过程中常用,但它假定数据完全同步。异步数据问题会极大降低EKF的姿态确定精度。为了在确保小卫星应用具有合理计算复杂度的同时,将异步数据导致的姿态估计精度损失降至最低,本文提出了单纯形反向传播卡尔曼滤波器(SBPKF)。所提出的SBPKF在卡尔曼更新过程中将时间延迟、陀螺不稳定性和导航误差纳入测量和协方差估计中。已将SBPKF的性能与EKF、改进自适应EKF(MAEKF)和移动协方差卡尔曼滤波器(MC-KF)进行了比较。仿真结果表明,SBPKF的姿态估计误差比EKF和MC-KF至少好30%。此外,SBPKF的计算复杂度比MAEKF低17%,比MC-KF低29%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f9/9606882/42a217943ab3/sensors-22-07970-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验