文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于数据增强辅助深度神经网络的小规模数据集非线性信噪比估计

Nonlinear SNR estimation based on the data augmentation-assisted DNN with a small-scale dataset.

作者信息

Zhao Weiwei, Cheng Yijun, Xiang Meng, Tang Ming, Qin Yuwen, Fu Songnian

出版信息

Opt Express. 2022 Oct 24;30(22):39725-39735. doi: 10.1364/OE.474956.


DOI:10.1364/OE.474956
PMID:36298918
Abstract

Fiber nonlinearity is one of the major impairments for long-haul transmission systems. Therefore, estimating the nonlinear signal-to-noise ratio (SNR) is indispensable to guarantee the quality of transmission and manage the operation of optical networks. The deep neural network (DNN) has been successfully applied for the SNR estimation. However, the performance substantially degrades, when the mega dataset is inaccessible. Here, we demonstrate an accurate SNR estimation based on the data augmentation (DA)-assisted DNN with a small-scale dataset in the frequency domain. When the 95-GBaud dual-polarization 16 quadrature amplitude modulation (DP-16QAM) signal with variable optical launch powers from -2 to 4-dBm is numerically transmitted from 80-km to 1520-km standard single-mode fiber (SSMF), we identify that, in comparison with traditional DNN scheme, the DA allows the reduction of the training dataset size by about 60% while keeping the same mean absolute error (MAE) as 0.2-dB of SNR estimation. Meanwhile, the DA-assisted DNN scheme can reduce the MAE by about 0.14-dB compared with the traditional DNN scheme, when both SNR estimation schemes use 100 raw datasets which contain 700 symbols. Due to these observations, the DA-assisted DNN scheme is promising for field-trial nonlinear SNR estimation, especially when the collection of mega datasets is inconvenient.

摘要

光纤非线性是长距离传输系统的主要损伤之一。因此,估计非线性信噪比(SNR)对于保证传输质量和管理光网络的运行是必不可少的。深度神经网络(DNN)已成功应用于SNR估计。然而,当无法获取海量数据集时,其性能会大幅下降。在此,我们展示了一种基于数据增强(DA)辅助的DNN在频域中利用小规模数据集进行准确的SNR估计。当95GBaud双偏振16正交幅度调制(DP-16QAM)信号在-2至4dBm的可变光发射功率下从80km至1520km的标准单模光纤(SSMF)中进行数值传输时,我们发现,与传统DNN方案相比,数据增强可使训练数据集大小减少约60%,同时保持相同的平均绝对误差(MAE),即SNR估计为0.2dB。同时,当两种SNR估计方案都使用包含700个符号的100个原始数据集时,与传统DNN方案相比,DA辅助的DNN方案可将MAE降低约0.14dB。基于这些观察结果,DA辅助的DNN方案在现场试验非线性SNR估计方面具有前景,特别是在收集海量数据集不方便的情况下。

相似文献

[1]
Nonlinear SNR estimation based on the data augmentation-assisted DNN with a small-scale dataset.

Opt Express. 2022-10-24

[2]
Accurate OSNR monitoring based on data-augmentation-assisted DNN with a small-scale dataset.

Opt Lett. 2022-1-1

[3]
Joint Fiber Nonlinear Noise Estimation, OSNR Estimation and Modulation Format Identification Based on Asynchronous Complex Histograms and Deep Learning for Digital Coherent Receivers.

Sensors (Basel). 2021-1-7

[4]
Convolutional-neural-network-based versus vision-transformer-based SNR estimation for visible light communication networks.

Opt Lett. 2023-3-15

[5]
OSNR monitoring for QPSK and 16-QAM systems in presence of fiber nonlinearities for digital coherent receivers.

Opt Express. 2012-8-13

[6]
OSNR and nonlinear noise power estimation for optical fiber communication systems using LSTM based deep learning technique.

Opt Express. 2018-8-6

[7]
Joint intra and inter-channel nonlinearity compensation based on interpretable neural network for long-haul coherent systems.

Opt Express. 2021-10-25

[8]
Fast and blind chromatic dispersion estimation with one sample per symbol.

Opt Express. 2021-3-1

[9]
Pilot-symbols-aided cycle slip mitigation for DP-16QAM optical communication systems.

Opt Express. 2013-9-23

[10]
Fast fiber nonlinearity compensation method for PDM coherent optical transmission systems based on the Fourier neural operator.

Opt Express. 2024-1-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索