Suppr超能文献

基于DNA甲基化谱的脑肿瘤诊断机器学习分类器的开发。

Development of a Machine Learning Classifier for Brain Tumors Diagnosis Based on DNA Methylation Profile.

作者信息

Chen Yuxing, Yan Yixin, Xu Moping, Chen Wen, Lin Jinyu, Zhao Yan, Wu Junze, Wang Xianlong

机构信息

Department of Bioinformatics, School of Basic Medical Sciences, School of Medical Technology and Engineering, Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.

Fujian Stomatological Hospital, Fujian Medical University, Fuzhou, China.

出版信息

Front Bioinform. 2021 Nov 8;1:744345. doi: 10.3389/fbinf.2021.744345. eCollection 2021.

Abstract

More than 150 types of brain tumors have been documented. Accurate diagnosis is important for making appropriate therapeutic decisions in treating the diseases. The goal of this study is to develop a DNA methylation profile-based classifier to accurately identify various kinds of brain tumors. Thirteen datasets of DNA methylation profiles were downloaded from the Gene Expression Omnibus (GEO) database, of which GSE90496 and GSE109379 were used as the training set and the validation set, respectively, and the remaining 11 sets were used as the independent test set. The random forest algorithm was used to select the CpG sites based on the importance of the features and a multilayer perceptron (MLP) model was trained to classify the samples. Deconvolution with the debCAM package was used to explore the cellular composition difference among tumors. From training datasets with 2,801 samples, 396,568 CpG sites were retained after preprocessing, of which 767 were selected as the modeling features. A three-layer MLP model was developed, which consists of 1,320 nodes in the hidden layer, to predict the histological types of brain tumors. The prediction accuracy is 99.2, 87.0, and 96.58%, respectively, on the training, validation and test sets. The results of deconvolution analysis showed that the cell proportions of different tumor subtypes were different, and it is approximately enough to distinguish different tumor entities. We developed a classifier that is robust for the classification of central nervous system tumors, and tried to analyze the reasons for the classification performance.

摘要

已记录的脑肿瘤类型超过150种。准确诊断对于制定治疗这些疾病的适当治疗决策非常重要。本研究的目的是开发一种基于DNA甲基化谱的分类器,以准确识别各种脑肿瘤。从基因表达综合数据库(GEO)下载了13个DNA甲基化谱数据集,其中GSE90496和GSE109379分别用作训练集和验证集,其余11个数据集用作独立测试集。基于特征的重要性,使用随机森林算法选择CpG位点,并训练多层感知器(MLP)模型对样本进行分类。使用debCAM软件包进行反卷积,以探索肿瘤之间的细胞组成差异。在对包含2801个样本的训练数据集中,预处理后保留了396568个CpG位点,其中767个被选为建模特征。开发了一个三层MLP模型,其隐藏层由1320个节点组成,用于预测脑肿瘤的组织学类型。在训练集、验证集和测试集上的预测准确率分别为99.2%、87.0%和96.58%。反卷积分析结果表明,不同肿瘤亚型的细胞比例不同,大致足以区分不同的肿瘤实体。我们开发了一种对中枢神经系统肿瘤分类具有鲁棒性的分类器,并试图分析分类性能的原因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef3b/9581020/800160385dbc/fbinf-01-744345-g001.jpg

相似文献

1
Development of a Machine Learning Classifier for Brain Tumors Diagnosis Based on DNA Methylation Profile.
Front Bioinform. 2021 Nov 8;1:744345. doi: 10.3389/fbinf.2021.744345. eCollection 2021.
2
MRI-Based Grading of Clear Cell Renal Cell Carcinoma Using a Machine Learning Classifier.
Front Oncol. 2021 Oct 1;11:708655. doi: 10.3389/fonc.2021.708655. eCollection 2021.
3
MethPed: a DNA methylation classifier tool for the identification of pediatric brain tumor subtypes.
Clin Epigenetics. 2015 Jul 9;7(1):62. doi: 10.1186/s13148-015-0103-3. eCollection 2015.
4
Hierarchical classification-based pan-cancer methylation analysis to classify primary cancer.
BMC Bioinformatics. 2023 Dec 8;24(1):465. doi: 10.1186/s12859-023-05529-0.
5
Artificial neural network classifier predicts neuroblastoma patients' outcome.
BMC Bioinformatics. 2016 Nov 8;17(Suppl 12):347. doi: 10.1186/s12859-016-1194-3.
8
Validation of Whole Genome Methylation Profiling Classifier for Central Nervous System Tumors.
J Mol Diagn. 2022 Aug;24(8):924-934. doi: 10.1016/j.jmoldx.2022.04.009. Epub 2022 May 21.
10
Mixture classification model based on clinical markers for breast cancer prognosis.
Artif Intell Med. 2010 Feb-Mar;48(2-3):129-37. doi: 10.1016/j.artmed.2009.07.008. Epub 2009 Dec 14.

引用本文的文献

1
SNUH methylation classifier for CNS tumors.
Clin Epigenetics. 2025 Mar 12;17(1):47. doi: 10.1186/s13148-025-01824-0.
2
Brain Tumor Classification by Methylation Profile.
J Korean Med Sci. 2023 Nov 6;38(43):e356. doi: 10.3346/jkms.2023.38.e356.

本文引用的文献

1
The 2021 WHO Classification of Tumors of the Central Nervous System: a summary.
Neuro Oncol. 2021 Aug 2;23(8):1231-1251. doi: 10.1093/neuonc/noab106.
2
Discriminating Origin Tissues of Tumor Cell Lines by Methylation Signatures and Dys-Methylated Rules.
Front Bioeng Biotechnol. 2020 May 26;8:507. doi: 10.3389/fbioe.2020.00507. eCollection 2020.
3
Metabolic targeting can improve the efficiency of brain tumor biopsies.
Semin Oncol. 2020 Apr-Jun;47(2-3):148-154. doi: 10.1053/j.seminoncol.2020.04.007. Epub 2020 May 25.
4
DNA methylation signature is prognostic of choroid plexus tumor aggressiveness.
Clin Epigenetics. 2019 Aug 13;11(1):117. doi: 10.1186/s13148-019-0708-z.
5
DNA methylation in thyroid cancer.
Endocr Relat Cancer. 2019 Jul;26(7):R415-R439. doi: 10.1530/ERC-19-0093.
6
CellMarker: a manually curated resource of cell markers in human and mouse.
Nucleic Acids Res. 2019 Jan 8;47(D1):D721-D728. doi: 10.1093/nar/gky900.
7
Analysis of DNA methylation in cancer: location revisited.
Nat Rev Clin Oncol. 2018 Jul;15(7):459-466. doi: 10.1038/s41571-018-0004-4.
8
DNA methylation-based classification of central nervous system tumours.
Nature. 2018 Mar 22;555(7697):469-474. doi: 10.1038/nature26000. Epub 2018 Mar 14.
9
A Novel Method for Rapid Molecular Subgrouping of Medulloblastoma.
Clin Cancer Res. 2018 Mar 15;24(6):1355-1363. doi: 10.1158/1078-0432.CCR-17-2243. Epub 2018 Jan 19.
10
A glycolysis-based ten-gene signature correlates with the clinical outcome, molecular subtype and IDH1 mutation in glioblastoma.
J Genet Genomics. 2017 Nov 20;44(11):519-530. doi: 10.1016/j.jgg.2017.05.007. Epub 2017 Sep 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验