Suppr超能文献

一种用于慢性疼痛的贝叶斯模型。

A Bayesian model for chronic pain.

作者信息

Eckert Anna-Lena, Pabst Kathrin, Endres Dominik M

机构信息

Theoretical Cognitive Science Group, Department of Psychology, Philipps-University Marburg, Marburg, Germany.

出版信息

Front Pain Res (Lausanne). 2022 Sep 16;3:966034. doi: 10.3389/fpain.2022.966034. eCollection 2022.

Abstract

The perceiving mind constructs our coherent and embodied experience of the world from noisy, ambiguous and multi-modal sensory information. In this paper, we adopt the perspective that the experience of pain may similarly be the result of a probabilistic, inferential process. Prior beliefs about pain, learned from past experiences, are combined with incoming sensory information in a Bayesian manner to give rise to pain perception. Chronic pain emerges when prior beliefs and likelihoods are biased towards inferring pain from a wide range of sensory data that would otherwise be perceived as harmless. We present a computational model of interoceptive inference and pain experience. It is based on a Bayesian graphical network which comprises a hidden layer, representing the inferred pain state; and an observable layer, representing current sensory information. Within the hidden layer, pain states are inferred from a combination of priors , transition probabilities between hidden states and likelihoods of certain observations . Using variational inference and free-energy minimization, the model is able to learn from observations over time. By systematically manipulating parameter settings, we demonstrate that the model is capable of reproducing key features of both healthy- and chronic pain experience. Drawing on mathematical concepts, we finally simulate treatment resistant chronic pain and discuss mathematically informed treatment options.

摘要

感知思维从嘈杂、模糊且多模态的感官信息中构建出我们对世界连贯且具身化的体验。在本文中,我们采用这样一种观点,即疼痛体验可能同样是一个概率性推理过程的结果。从过去的经历中学到的关于疼痛的先验信念,会以贝叶斯方式与传入的感官信息相结合,从而产生疼痛感知。当先验信念和似然性偏向于从一系列原本会被视为无害的感官数据中推断出疼痛时,慢性疼痛就会出现。我们提出了一个关于内感受推理和疼痛体验的计算模型。它基于一个贝叶斯图形网络,该网络包括一个表示推断出的疼痛状态的隐藏层,以及一个表示当前感官信息的可观察层。在隐藏层内,疼痛状态是根据先验概率、隐藏状态之间的转移概率以及某些观察结果的似然性推断出来的。通过变分推理和自由能最小化,该模型能够随着时间的推移从观察中学习。通过系统地操纵参数设置,我们证明该模型能够重现健康疼痛体验和慢性疼痛体验的关键特征。借助数学概念,我们最终模拟了难治性慢性疼痛,并讨论了基于数学的治疗方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec66/9595216/39f053c4f493/fpain-03-966034-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验