Suppr超能文献

细胞大小:植物原生质体分生潜能的关键决定因素。

Cell size: a key determinant of meristematic potential in plant protoplasts.

作者信息

Pujari Ipsita, Thomas Abitha, Rai Padmalatha S, Satyamoorthy Kapaettu, Babu Vidhu Sankar

机构信息

Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576 104 India.

Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka India.

出版信息

aBIOTECH. 2021 Jan 1;2(1):96-104. doi: 10.1007/s42994-020-00033-y. eCollection 2021 Mar.

Abstract

Metabolic pathway reconstruction and gene edits for native natural product synthesis in single plant cells are considered to be less complicated when compared to the production of non-native metabolites. Being an efficient eukaryotic system, plants encompass suitable post-translational modifications. However, slow cell division rate and heterogeneous nature is an impediment for consistent product retrieval from plant cells. Plant cell synchrony can be attained in cultures developed in vitro. Isolated plant protoplasts capable of division, can potentially enhance the unimpaired yield of target bioactives, similar to microbes and unicellular eukaryotes. Evidence from yeast experiments suggests that 'critical cell size' and division rates for enhancement machinery, primarily depend on culture conditions and nutrient availability. The cell size control mechanisms in shoot apical meristem is analogous to yeast notably, fission yeast. If protoplasts isolated from plants are subjected to cell size studies and cell cycle progression in culture, it will answer the underlying molecular mechanisms such as, unicellular to multicellular transition states, longevity, senescence, 'cell-size resetting' during organogenesis, and adaptation to external cues.

摘要

与非天然代谢产物的生产相比,在单个植物细胞中进行天然天然产物合成的代谢途径重建和基因编辑被认为不那么复杂。作为一种高效的真核系统,植物具有合适的翻译后修饰。然而,细胞分裂速度缓慢和性质异质性是从植物细胞中持续获取产物的障碍。植物细胞同步性可以在体外培养中实现。能够分裂的分离植物原生质体有可能提高目标生物活性物质的无损产量,类似于微生物和单细胞真核生物。酵母实验的证据表明,增强机制的“临界细胞大小”和分裂速率主要取决于培养条件和营养可用性。茎尖分生组织中的细胞大小控制机制与酵母特别是裂殖酵母类似。如果对从植物中分离的原生质体进行细胞大小研究和培养中的细胞周期进程研究,将揭示潜在的分子机制,如单细胞到多细胞的转变状态、寿命、衰老、器官发生过程中的“细胞大小重置”以及对外部信号的适应。

相似文献

1
Cell size: a key determinant of meristematic potential in plant protoplasts.
aBIOTECH. 2021 Jan 1;2(1):96-104. doi: 10.1007/s42994-020-00033-y. eCollection 2021 Mar.
2
Active Control of Cell Size Generates Spatial Detail during Plant Organogenesis.
Curr Biol. 2015 Nov 16;25(22):2991-6. doi: 10.1016/j.cub.2015.10.008. Epub 2015 Oct 29.
3
Native and non-native host assessment towards metabolic pathway reconstructions of plant natural products.
Biotechnol Rep (Amst). 2021 Apr 16;30:e00619. doi: 10.1016/j.btre.2021.e00619. eCollection 2021 Jun.
4
Cell size and growth regulation in the Arabidopsis thaliana apical stem cell niche.
Proc Natl Acad Sci U S A. 2016 Dec 20;113(51):E8238-E8246. doi: 10.1073/pnas.1616768113. Epub 2016 Dec 5.
6
The cell cycle in plant development.
New Phytol. 1992 Sep;122(1):1-20. doi: 10.1111/j.1469-8137.1992.tb00048.x.
7
8
Plant cell suspension cultures.
Methods Mol Biol. 2013;953:77-93. doi: 10.1007/978-1-62703-152-3_5.

本文引用的文献

1
2
Plant stem-cell organization and differentiation at single-cell resolution.
Proc Natl Acad Sci U S A. 2020 Dec 29;117(52):33689-33699. doi: 10.1073/pnas.2018788117. Epub 2020 Dec 14.
3
N-Adenosine Methylation of Socs1 mRNA Is Required to Sustain the Negative Feedback Control of Macrophage Activation.
Dev Cell. 2020 Dec 21;55(6):737-753.e7. doi: 10.1016/j.devcel.2020.10.023. Epub 2020 Nov 20.
4
Mapping Reaction-Diffusion Networks at the Plant Wound Site With Pathogens.
Front Plant Sci. 2020 Jul 16;11:1074. doi: 10.3389/fpls.2020.01074. eCollection 2020.
7
Cell-size regulation in budding yeast does not depend on linear accumulation of Whi5.
Proc Natl Acad Sci U S A. 2020 Jun 23;117(25):14243-14250. doi: 10.1073/pnas.2001255117. Epub 2020 Jun 9.
8
Phenylpropanoid Pathway Engineering: An Emerging Approach towards Plant Defense.
Pathogens. 2020 Apr 23;9(4):312. doi: 10.3390/pathogens9040312.
9
Plants are better engineers: the complexity of plant organ morphogenesis.
Curr Opin Genet Dev. 2020 Aug;63:16-23. doi: 10.1016/j.gde.2020.02.008. Epub 2020 Mar 5.
10
The Winner Takes It All: Auxin-The Main Player during Plant Embryogenesis.
Cells. 2020 Mar 3;9(3):606. doi: 10.3390/cells9030606.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验