Suppr超能文献

一种用于在……中高效生成无Cas9多重突变体的新型CRISPR/Cas9系统。 (你提供的原文最后似乎不完整)

A novel CRISPR/Cas9 system for efficiently generating Cas9-free multiplex mutants in .

作者信息

Wang Jiajun, Chen Haodong

机构信息

State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China.

出版信息

aBIOTECH. 2019 Nov 20;1(1):6-14. doi: 10.1007/s42994-019-00011-z. eCollection 2020 Jan.

Abstract

The CRISPR/Cas9 genome-editing system has emerged as a popular powerful tool for biological research. However, the process of selecting efficiently edited Cas9-free plants is usually laborious and time consuming. Here, we demonstrated P2A to be the most efficient self-cleaving peptide for fusing Cas9 and GFP in and then used Cas9-P2A-GFP to develop a novel CRISPR/Cas9 system. Additionally, a pair of isocaudomer restriction enzymes were selected to conveniently assemble multiple sgRNAs. In this system, the GFP fluorescence intensity in T1 transgenic plants indicates the expression level of the Cas9 protein, which correlates well with the editing efficiency. Furthermore, Cas9-free plants can be easily selected by examining GFP fluorescence in T2 transgenic plants. The efficient knockout of , and demonstrated the robustness of our new system. Thus, we designed a novel CRISPR/Cas9 system that can generate Cas9-free multiplex mutants efficiently in and possibly in other plant species.

摘要

CRISPR/Cas9基因组编辑系统已成为生物学研究中一种流行的强大工具。然而,选择高效编辑的无Cas9植物的过程通常既费力又耗时。在这里,我们证明P2A是在[具体植物名称]中融合Cas9和GFP最有效的自切割肽,然后使用Cas9-P2A-GFP开发了一种新型CRISPR/Cas9系统。此外,选择了一对同裂酶限制酶来方便地组装多个sgRNA。在这个系统中,T1转基因植物中的GFP荧光强度表明Cas9蛋白的表达水平,这与编辑效率密切相关。此外,通过检测T2转基因植物中的GFP荧光,可以轻松选择无Cas9植物。[具体基因名称1]、[具体基因名称2]和[具体基因名称3]的高效敲除证明了我们新系统的稳健性。因此,我们设计了一种新型CRISPR/Cas9系统,该系统可以在[具体植物名称]中高效产生无Cas9的多重突变体,并且可能在其他植物物种中也能实现。

相似文献

1
A novel CRISPR/Cas9 system for efficiently generating Cas9-free multiplex mutants in .
aBIOTECH. 2019 Nov 20;1(1):6-14. doi: 10.1007/s42994-019-00011-z. eCollection 2020 Jan.
3
A dual-function selection system enables positive selection of multigene CRISPR mutants and negative selection of -free progeny in .
aBIOTECH. 2024 Jan 22;5(2):140-150. doi: 10.1007/s42994-023-00132-6. eCollection 2024 Jun.
5
A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis.
Plant Cell Rep. 2016 Jul;35(7):1519-33. doi: 10.1007/s00299-015-1900-z. Epub 2015 Dec 10.
6
CRISPR/Cas9-Based Gene Editing Using Egg Cell-Specific Promoters in Arabidopsis and Soybean.
Front Plant Sci. 2020 Jun 16;11:800. doi: 10.3389/fpls.2020.00800. eCollection 2020.
7
8
Arabidopsis glutamate:glyoxylate aminotransferase 1 (Ler) mutants generated by CRISPR/Cas9 and their characteristics.
Transgenic Res. 2018 Feb;27(1):61-74. doi: 10.1007/s11248-017-0052-z. Epub 2018 Feb 1.
9
Generation of stable nulliplex autopolyploid lines of Arabidopsis thaliana using CRISPR/Cas9 genome editing.
Plant Cell Rep. 2017 Jun;36(6):1005-1008. doi: 10.1007/s00299-017-2125-0. Epub 2017 Mar 13.
10
A CRISPR/Cas9 toolkit for multiplex genome editing in plants.
BMC Plant Biol. 2014 Nov 29;14:327. doi: 10.1186/s12870-014-0327-y.

引用本文的文献

1
CRISPR/Cas system-mediated transgene-free or DNA-free genome editing in plants.
Theor Appl Genet. 2025 Aug 12;138(9):210. doi: 10.1007/s00122-025-04990-0.
4
The apoplastic pH is a key determinant in the hypocotyl growth response to auxin dosage and light.
Nat Plants. 2025 Feb;11(2):279-294. doi: 10.1038/s41477-025-01910-4. Epub 2025 Feb 14.
6
A CRISPR/Cas9-induced male-sterile line facilitating easy hybrid production in polyploid rapeseed ().
Hortic Res. 2024 May 28;11(7):uhae139. doi: 10.1093/hr/uhae139. eCollection 2024 Jul.
7
A dual-function selection system enables positive selection of multigene CRISPR mutants and negative selection of -free progeny in .
aBIOTECH. 2024 Jan 22;5(2):140-150. doi: 10.1007/s42994-023-00132-6. eCollection 2024 Jun.
8
The Role of FveAFB5 in Auxin-Mediated Responses and Growth in Strawberries.
Plants (Basel). 2024 Apr 19;13(8):1142. doi: 10.3390/plants13081142.
9
Arabidopsis transcription factor TCP4 controls the identity of the apical gynoecium.
Plant Cell. 2024 Jul 2;36(7):2668-2688. doi: 10.1093/plcell/koae107.
10
Gene Stacking and Stoichiometric Expression of ER-Targeted Constructs Using "2A" Self-Cleaving Peptides.
Methods Mol Biol. 2024;2772:337-351. doi: 10.1007/978-1-0716-3710-4_26.

本文引用的文献

1
Gene editing in plants: progress and challenges.
Natl Sci Rev. 2019 May;6(3):421-437. doi: 10.1093/nsr/nwz005. Epub 2019 Jan 17.
3
Fluorescence Marker-Assisted Isolation of Cas9-Free and CRISPR-Edited Arabidopsis Plants.
Methods Mol Biol. 2019;1917:147-154. doi: 10.1007/978-1-4939-8991-1_11.
4
A Multipurpose Toolkit to Enable Advanced Genome Engineering in Plants.
Plant Cell. 2017 Jun;29(6):1196-1217. doi: 10.1105/tpc.16.00922. Epub 2017 May 18.
5
Gene Targeting by Homology-Directed Repair in Rice Using a Geminivirus-Based CRISPR/Cas9 System.
Mol Plant. 2017 Jul 5;10(7):1007-1010. doi: 10.1016/j.molp.2017.03.002. Epub 2017 Mar 16.
7
Arabidopsis SAURs are critical for differential light regulation of the development of various organs.
Proc Natl Acad Sci U S A. 2016 May 24;113(21):6071-6. doi: 10.1073/pnas.1604782113. Epub 2016 Apr 26.
8
A Simple CRISPR/Cas9 System for Multiplex Genome Editing in Rice.
J Genet Genomics. 2015 Dec 20;42(12):703-6. doi: 10.1016/j.jgg.2015.09.011. Epub 2015 Oct 24.
9
A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis.
Plant Cell Rep. 2016 Jul;35(7):1519-33. doi: 10.1007/s00299-015-1900-z. Epub 2015 Dec 10.
10
High-Efficiency Genome Editing in Arabidopsis Using YAO Promoter-Driven CRISPR/Cas9 System.
Mol Plant. 2015 Dec 7;8(12):1820-3. doi: 10.1016/j.molp.2015.10.004. Epub 2015 Oct 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验