Suppr超能文献

具有平流项的单种群模型的分歧分析。

Bifurcation analysis for a single population model with advection.

机构信息

Department of Mathematics, Harbin Institute of Technology, Weihai, Shandong, 264209, People's Republic of China.

School of Science, Jimei University, Xiamen, Fujian, 361021, People's Republic of China.

出版信息

J Math Biol. 2022 Oct 28;85(6-7):61. doi: 10.1007/s00285-022-01818-z.

Abstract

In this paper, the dynamics of a single population model with a general growth function is investigated in an advective environment. We show the existence of a nonconstant positive steady state, and give sufficient conditions for the occurrence of a Hopf bifurcation at the positive steady state. Moreover, the theoretical results are applied to the diffusive Nicholson's blowflies and Mackey-Glass's models with advection and delay, respectively. We numerically show that the population density decreases as the increase of advection rate or death rate, and a delay-induced Hopf bifurcation is more likely to occur with small advection or low mortality rate.

摘要

本文研究了在平流环境中具有广义生长函数的单种群模型的动力学。我们证明了非恒定正平衡点的存在,并给出了正平衡点处 Hopf 分岔发生的充分条件。此外,理论结果分别应用于具有平流和时滞的扩散 Nicholson 的苍蝇和 Mackey-Glass 模型。我们数值显示,随着平流率或死亡率的增加,种群密度会降低,而随着平流或低死亡率的增加,延迟诱导的 Hopf 分岔更有可能发生。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验