School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China.
School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
J Environ Manage. 2023 Jan 1;325(Pt B):116562. doi: 10.1016/j.jenvman.2022.116562. Epub 2022 Oct 26.
Vegetation change reflects sensitive responses of ecosystem environment to global climate change as well as land use. It is well known that land use type and its transformation affect vegetation change. However, how the changes in land use intensity (LUI) within different land use types impact vegetation and the interactions with other drivers remain poorly understood. We measured the LUI of Jiangsu Province, China, within the main land use types in 1995, 2000, 2005, 2010, 2015 and 2018 by combining remote sensing-based land use data with representative county scale economic and social indicators. Structural equation models (SEMs) were built to quantify the influences of long term LUI on vegetation change interacting with economic development, climate change and topographical conditions in transformed land, cropland, rural settlements and urbanized land, respectively. Seventy percent of significant vegetation change existed in non-transformed land use types. Although the area with a vegetation greening trend is larger than that with a vegetation browning trend, the vegetation browning areas is prominent in urbanized lands and some croplands in south basins. The constructed SEMs suggested the dominant negative effect of fast economic development regardless of land use types, while LUI played important and different direct and indirect effects on affecting vegetation change significantly interacting with economic development and climate change in different land use types. The LUI increasing led a vegetation greening in cropland, and stronger than climate warming with both positive direct and indirect effects for influencing climate change. The LUI change took negative effects on vegetation change in rural and urban areas, while a positive indirect effect of LUI increasing in urbanized land signaled the positive results of human managements. We then provided some land use-specific suggestions on basin scale for land management in Jiangsu. Our results highlight the necessity of long-term LUI quantification and promote the understanding of its effects on vegetation change interacted with other drivers within different land use types. This can be very helpful for sustainable land use and managements in regions with fast economic development.
植被变化反映了生态系统环境对全球气候变化以及土地利用的敏感响应。众所周知,土地利用类型及其转化会影响植被变化。然而,不同土地利用类型内土地利用强度(LUI)的变化如何影响植被,以及与其他驱动因素的相互作用仍知之甚少。我们通过结合基于遥感的土地利用数据和具有代表性的县级经济和社会指标,测量了中国江苏省 1995 年、2000 年、2005 年、2010 年、2015 年和 2018 年主要土地利用类型内的 LUI。结构方程模型(SEMs)分别构建,以量化长期 LUI 对植被变化的影响,同时考虑经济发展、气候变化以及转化土地、耕地、农村住区和城市土地的地形条件的相互作用。70%的显著植被变化发生在非转化土地利用类型中。尽管植被绿化趋势的面积大于植被枯黄趋势的面积,但在城市土地和南部流域的一些耕地中,植被枯黄的区域较为明显。所构建的 SEMs 表明,无论土地利用类型如何,快速的经济发展都具有主导的负面影响,而 LUI 在不同土地利用类型中对植被变化的显著影响具有重要且不同的直接和间接作用,并且与经济发展和气候变化相互作用。LUI 的增加导致耕地的植被绿化,且由于具有积极的直接和间接影响,其对气候变化的影响强于气候变暖。LUI 的变化对农村和城市地区的植被变化产生负面影响,而城市土地中 LUI 增加的积极间接效应则标志着人类管理的积极成果。然后,我们为江苏流域尺度的土地管理提供了一些特定于土地利用的建议。我们的研究结果强调了长期 LUI 量化的必要性,并促进了对不同土地利用类型内其对植被变化的影响与其他驱动因素相互作用的理解。这对于快速经济发展地区的可持续土地利用和管理非常有帮助。