Suppr超能文献

基于遗传算法和离散事件模拟的卫生服务优化规划:一种模型提议及其在中风康复护理中的应用

Optimal Planning of Health Services through Genetic Algorithm and Discrete Event Simulation: A Proposed Model and Its Application to Stroke Rehabilitation Care.

作者信息

Yan Charles, McClure Nathan, Dukelow Sean P, Mann Balraj, Round Jeff

机构信息

Institute of Health Economics, Edmonton, AB, Canada.

Institute of Health Economics; School of Publish Health, University of Alberta, Edmonton, AB, Canada.

出版信息

MDM Policy Pract. 2022 Oct 22;7(2):23814683221134098. doi: 10.1177/23814683221134098. eCollection 2022 Jul-Dec.

Abstract

UNLABELLED

Increasing demand for provision of care to stroke survivors creates challenges for health care planners. A key concern is the optimal alignment of health care resources between provision of acute care, rehabilitation, and among different segments of rehabilitation, including inpatient rehabilitation, early supported discharge (ESD), and outpatient rehabilitation (OPR). We propose a novel application of discrete event simulation (DES) combined with a genetic algorithm (GA) to identify the optimal configuration of rehabilitation that maximizes patient benefits subject to finite health care resources. Our stroke rehabilitation optimal model (sROM) combines DES and GA to identify an optimal solution that minimizes wait time for each segment of rehabilitation by changing care capacity across different segments. sROM is initiated by generating parameters for DES. GA is used to evaluate wait time from DES. If wait time meets specified stopping criteria, the search process stops at a point at which optimal capacity is reached. If not, capacity estimates are updated, and an additional iteration of the DES is run. To parameterize the model, we standardized real-world data from medical records by fitting them into probability distributions. A meta-analysis was conducted to determine the likelihood of stroke survivors flowing across rehabilitation segments. We predict that rehabilitation planners in Alberta, Canada, have the potential to improve services by increasing capacity from 75 to 113 patients per day for ESD and from 101 to 143 patients per day for OPR. Compared with the status quo, optimal capacity would provide ESD to 138 ( = 29.5) more survivors and OPR to 262 ( = 45.5) more annually while having an estimated net annual cost savings of $25.45 ( = 15.02) million. The combination of DES and GA can be used to estimate optimal service capacity.

HIGHLIGHTS

We created a hybrid model combining a genetic algorithm and discrete event simulation to search for the optimal configuration of health care service capacity that maximizes patient outcomes subject to finite health system resources.We applied a probability distribution fitting process to standardize real-world data to probability distributions. The process consists of choosing the distribution type and estimating the parameters of that distribution that best reflects the data. Standardizing real-word data to a best-fitted distribution can increase model generalizability.In an illustrative study of stroke rehabilitation care, resource allocation to stroke rehabilitation services under an optimal configuration allows provision of care to more stroke survivors who need services while reducing wait time.Resources needed to expand rehabilitation services could be reallocated from the savings due to reduced wait time in acute care units. In general, the predicted optimal configuration of stroke rehabilitation services is associated with a net cost savings to the health care system.

摘要

未标注

为中风幸存者提供护理的需求不断增加,给医疗保健规划者带来了挑战。一个关键问题是在急性护理、康复以及不同康复环节(包括住院康复、早期支持出院(ESD)和门诊康复(OPR))之间,医疗资源的优化配置。我们提出一种将离散事件模拟(DES)与遗传算法(GA)相结合的新应用,以确定在有限医疗资源条件下能使患者受益最大化的康复最佳配置。我们的中风康复优化模型(sROM)将DES和GA相结合,通过改变不同环节的护理能力,找到能使每个康复环节等待时间最短的最优解。sROM通过生成DES的参数来启动。GA用于评估DES的等待时间。如果等待时间符合指定的停止标准,搜索过程在达到最优能力的点停止。如果不符合,则更新能力估计,并运行额外一轮的DES。为了对模型进行参数化,我们通过将来自医疗记录的真实世界数据拟合到概率分布中,使其标准化。进行了一项荟萃分析,以确定中风幸存者在不同康复环节流转的可能性。我们预测,加拿大艾伯塔省的康复规划者有潜力通过将ESD的每日服务能力从75名患者提高到113名,将OPR的每日服务能力从101名患者提高到143名来改善服务。与现状相比,最优能力配置每年可为多138名(=29.5)幸存者提供ESD,为多262名(=45.5)幸存者提供OPR,同时估计每年可节省净成本2545万美元(=1502万美元)。DES和GA的组合可用于估计最优服务能力。

重点

我们创建了一个结合遗传算法和离散事件模拟的混合模型,以在有限的卫生系统资源条件下,寻找能使患者结果最大化的医疗服务能力的最优配置。我们应用概率分布拟合过程将真实世界数据标准化为概率分布。该过程包括选择分布类型并估计最能反映数据的该分布的参数。将真实世界数据标准化为最佳拟合分布可提高模型的通用性。在一项中风康复护理的示例研究中,最优配置下的中风康复服务资源分配能够为更多需要服务的中风幸存者提供护理,同时减少等待时间。扩大康复服务所需的资源可从急性护理单元因等待时间减少而节省的费用中重新分配。总体而言,预测的中风康复服务最优配置与医疗保健系统的净成本节省相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f447/9597031/641158921088/10.1177_23814683221134098-img2.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验