Patiño-Escobar Bonell, Ferguson Ian D, Wiita Arun P
Dept. of Laboratory Medicine, University of California, San Francisco, CA, USA.
Program in Cancer Biology, Stanford University School of Medicine, CA, USA.
Cell Stress. 2022 Oct 13;6(11):89-92. doi: 10.15698/cst2022.11.273. eCollection 2022 Nov.
The cell surface proteome ("surfaceome") serves as the interface between diseased cells and their local microenvironment. In cancer, this compartment is critical not only for defining tumor biology but also serves as a rich source of potential therapeutic targets and diagnostic markers. Recently, we profiled the surfaceome of the blood cancer multiple myeloma, an incurable plasma cell malignancy. While available small molecule agents can drive initial remissions in myeloma, resistance inevitably occurs. Several new classes of immunotherapies targeting myeloma surface antigens, including antibody therapeutics and chimeric antigen receptor (CAR) T-cells, can further prolong survival. However, new approaches are still needed for those who relapse. We thus applied the glycoprotein cell surface capture (CSC) methodology to panel of multiple myeloma cell lines, identifying key surface protein features of malignant plasma cells. We characterized the most abundant surface proteins on plasma cells, nominating CD48 as a high-density antigen favorable for a possible avidity-based strategy to enhance CAR-T efficacy. After chronic resistance to proteasome inhibitors, a first-line therapy, we found significant alterations in the surface profile of myeloma cells, including down-regulation of CD50, CD361/EVI2B, and CD53, while resistance to another first-line therapy, lenalidomide, drove increases in CD33 and CD45/PTPRC. In contrast, short-term treatment with lenalidomide led to upregulation of the surface antigen MUC-1, thereby enhancing efficacy of MUC-1 targeting CAR-T cells. Integrating our proteomics data with available transcriptome datasets, we developed a scoring system to rank potential standalone immunotherapy targets. Novel targets of interest included CCR10, TXNDC11, and LILRB4. We developed proof-of-principle CAR-T cells versus CCR10 using its natural ligand, CCL27, as an antigen recognition domain. Finally, we developed a "miniaturized" version of the CSC methodology and applied it to primary myeloma patient specimens. Overall, our work creates a unique resource for the myeloma community. This study also supports unbiased surface proteomic profiling as a fruitful strategy for identifying new therapeutic targets and markers of drug resistance, that could have utility in improving myeloma patient outcomes. Similar approaches could be readily applied to additional tumor types or even models/tissues derived from other diseases.
细胞表面蛋白质组(“表面组”)是患病细胞与其局部微环境之间的界面。在癌症中,这一区域不仅对于定义肿瘤生物学至关重要,而且还是潜在治疗靶点和诊断标志物的丰富来源。最近,我们对血癌多发性骨髓瘤(一种无法治愈的浆细胞恶性肿瘤)的表面组进行了分析。虽然现有的小分子药物可以促使骨髓瘤患者实现初始缓解,但耐药性不可避免地会出现。几种针对骨髓瘤表面抗原的新型免疫疗法,包括抗体疗法和嵌合抗原受体(CAR)T细胞,可以进一步延长患者生存期。然而,对于复发患者仍需要新的治疗方法。因此,我们将糖蛋白细胞表面捕获(CSC)方法应用于多发性骨髓瘤细胞系,确定了恶性浆细胞的关键表面蛋白特征。我们对浆细胞上最丰富的表面蛋白进行了表征,将CD48确定为一种高密度抗原,有利于采用基于亲和力的策略来增强CAR-T细胞的疗效。在对一线治疗药物蛋白酶体抑制剂产生慢性耐药后,我们发现骨髓瘤细胞的表面特征发生了显著变化,包括CD50、CD361/EVI2B和CD53的下调,而对另一种一线治疗药物来那度胺产生耐药则导致CD33和CD45/PTPRC增加。相比之下,短期使用来那度胺治疗会导致表面抗原MUC-1上调,从而增强靶向MUC-1的CAR-T细胞的疗效。我们将蛋白质组学数据与现有的转录组数据集相结合,开发了一种评分系统,对潜在的独立免疫治疗靶点进行排名。新的感兴趣靶点包括CCR10、TXNDC11和LILRB4。我们利用CCR10的天然配体CCL27作为抗原识别域,开发了针对CCR10的原理验证CAR-T细胞。最后,我们开发了CSC方法的“小型化”版本,并将其应用于原发性骨髓瘤患者样本。总体而言,我们的工作为骨髓瘤研究群体创造了一个独特的资源。这项研究还支持无偏倚的表面蛋白质组分析,认为这是一种富有成效的策略,可用于识别新的治疗靶点和耐药标志物,可能有助于改善骨髓瘤患者的治疗效果。类似的方法可以很容易地应用于其他肿瘤类型,甚至是源自其他疾病的模型/组织。