Chen Hongyu, Yang Guangyi, Zhang Hongyan
IEEE Trans Neural Netw Learn Syst. 2024 Jul;35(7):8797-8811. doi: 10.1109/TNNLS.2022.3215751. Epub 2024 Jul 8.
Hyperspectral image (HSI) qualities are limited by a mixture of Gaussian noise, impulse noise, stripes, and deadlines during the sensor imaging process, resulting in weak application performance. To enhance HSI qualities, methods based on convolutional neural networks have been successively applied to restore clean data from the observed data. However, the architecture of these methods lacks spectral and spatial constraints, and the convolution operators have limited receptive fields and inflexible model inferences. Thus, in this study, we propose an efficient end-to-end transformer, named HSI denoising transformer (Hider), for mixed HSI noise removal. First, a U-shaped 3-D transformer architecture is built for multiscale feature aggregation. Second, a multihead global spectral attention module within the spectral transformer block is designed to excavate information in different spectral patterns. Finally, an additional locally enhanced cross-spatial attention module within the spatial-spectral transformer block is constructed to build the long-range spatial relationship to avoid the high computational complexity of global spatial self-attention. Through the imposition of global correlations along spectrum and spatial self-similarity constraints on the transformer, our proposed Hider aims to capture long-range spatial contextual information and cluster objects with the same spectral pattern for HSI denoising. To verify the effectiveness and efficiency of Hider, we conducted extensive simulated and real experiments. The denoising results on both simulated and real-world datasets show that Hider achieves superior evaluation metrics and visual assessments compared with other state-of-the-art methods.
高光谱图像(HSI)的质量在传感器成像过程中受到高斯噪声、脉冲噪声、条纹和截止现象的混合影响,导致应用性能较弱。为了提高HSI质量,基于卷积神经网络的方法已相继应用于从观测数据中恢复干净数据。然而,这些方法的架构缺乏光谱和空间约束,卷积算子的感受野有限且模型推理不灵活。因此,在本研究中,我们提出了一种高效的端到端变换器,名为HSI去噪变换器(Hider),用于去除混合的HSI噪声。首先,构建了一个U形3D变换器架构用于多尺度特征聚合。其次,在光谱变换器模块内设计了一个多头全局光谱注意力模块,以挖掘不同光谱模式中的信息。最后,在空间光谱变换器模块内构建了一个额外的局部增强交叉空间注意力模块,以建立远距离空间关系,避免全局空间自注意力的高计算复杂度。通过在变换器上施加沿光谱的全局相关性和空间自相似性约束,我们提出的Hider旨在捕获远距离空间上下文信息,并对具有相同光谱模式的对象进行聚类以实现HSI去噪。为了验证Hider的有效性和效率,我们进行了广泛的模拟和实际实验。在模拟和真实世界数据集上的去噪结果表明,与其他现有方法相比,Hider实现了更好的评估指标和视觉评估。