Suppr超能文献

基于分散数据的深度类别增量学习

Deep Class-Incremental Learning From Decentralized Data.

作者信息

Zhang Xiaohan, Dong Songlin, Chen Jinjie, Tian Qi, Gong Yihong, Hong Xiaopeng

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 May;35(5):7190-7203. doi: 10.1109/TNNLS.2022.3214573. Epub 2024 May 2.

Abstract

In this article, we focus on a new and challenging decentralized machine learning paradigm in which there are continuous inflows of data to be addressed and the data are stored in multiple repositories. We initiate the study of data-decentralized class-incremental learning (DCIL) by making the following contributions. First, we formulate the DCIL problem and develop the experimental protocol. Second, we introduce a paradigm to create a basic decentralized counterpart of typical (centralized) CIL approaches, and as a result, establish a benchmark for the DCIL study. Third, we further propose a decentralized composite knowledge incremental distillation (DCID) framework to transfer knowledge from historical models and multiple local sites to the general model continually. DCID consists of three main components, namely, local CIL, collaborated knowledge distillation (KD) among local models, and aggregated KD from local models to the general one. We comprehensively investigate our DCID framework by using a different implementation of the three components. Extensive experimental results demonstrate the effectiveness of our DCID framework. The source code of the baseline methods and the proposed DCIL is available at https://github.com/Vision-Intelligence-and-Robots-Group/DCIL.

摘要

在本文中,我们聚焦于一种全新且具有挑战性的去中心化机器学习范式,其中存在需要处理的持续数据流,且数据存储在多个存储库中。我们通过做出以下贡献开启了对数据去中心化类增量学习(DCIL)的研究。首先,我们阐述了DCIL问题并制定了实验方案。其次,我们引入了一种范式,以创建典型(集中式)CIL方法的基本去中心化对应物,从而为DCIL研究建立了一个基准。第三,我们进一步提出了一种去中心化复合知识增量蒸馏(DCID)框架,以便将知识从历史模型和多个本地站点持续转移到通用模型。DCID由三个主要组件组成,即本地CIL、本地模型之间的协作知识蒸馏(KD)以及从本地模型到通用模型的聚合KD。我们通过对这三个组件的不同实现方式全面研究了我们的DCID框架。大量实验结果证明了我们的DCID框架的有效性。基线方法和所提出的DCIL的源代码可在https://github.com/Vision-Intelligence-and-Robots-Group/DCIL获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验