Thupakula Umamahesh, Laha Priya, Lippertz Gertjan, Schouteden Koen, Netsou Asteriona-Maria, Seliverstov Aleksandr, Terryn Herman, Pereira Lino M C, Van Haesendonck Chris
Quantum Solid State Physics, KU Leuven, 3001 Leuven, Belgium.
Department of Materials and Chemistry, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
J Chem Phys. 2022 Oct 28;157(16):164703. doi: 10.1063/5.0104652.
Two-dimensional (2D) allotropes of tellurium (Te), recently coined as tellurene, are currently an emerging topic of materials research due to the theoretically predicted exotic properties of Te in its ultrathin form and at the single atomic layer limit. However, a prerequisite for the production of such new and single elemental 2D materials is the development of simple and robust fabrication methods. In the present work, we report three different 2D superstructures of Te on Au(111) surfaces by following an alternative experimental deposition approach. We have investigated the superstructures using low-temperature scanning tunneling microscopy and spectroscopy, Auger electron spectroscopy (AES), and field emission AES. Three superstructures (13 × 13, 8 × 4, and √11 × √11) of 2D Te are observed in our experiments, and the formation of these superstructures is accompanied by the lifting of the characteristic 23 × √3 surface reconstruction of the Au(111) surface. Scanning tunneling spectroscopy reveals a strong dependence of the local electronic properties on the structural arrangement of the Te atoms on the Au(111) support, and we observe superstructure-dependent electronic resonances around the Fermi level and below the Au(111) conduction band. In addition to the appearance of the new electronic resonances, the emergence of band gaps with a p-type charge character has been evidenced for two out of three Te superstructures (13 × 13 and √11 × √11) on the Au(111) support.
碲(Te)的二维(2D)同素异形体,最近被称为碲烯,由于理论上预测的碲在超薄形式和单原子层极限下的奇异特性,目前是材料研究中的一个新兴课题。然而,生产这种新型单元素二维材料的一个先决条件是开发简单且可靠的制备方法。在本工作中,我们通过采用另一种实验沉积方法,报道了碲在Au(111)表面上的三种不同二维超结构。我们使用低温扫描隧道显微镜和光谱、俄歇电子能谱(AES)以及场发射AES对这些超结构进行了研究。在我们的实验中观察到了二维碲的三种超结构(13×13、8×4和√11×√11),并且这些超结构的形成伴随着Au(111)表面特征性的23×√3表面重构的消失。扫描隧道光谱揭示了局部电子性质强烈依赖于Au(111)衬底上碲原子的结构排列,并且我们在费米能级附近以及Au(111)导带以下观察到了与超结构相关的电子共振。除了新的电子共振的出现,在Au(111)衬底上的三种碲超结构中的两种(13×13和√11×√11)已证明出现了具有p型电荷特征的带隙。