Pi Mengting, Zhong Ruhan, Hu Shaoqiang, Cai Zhuoying, Plunkert Madison, Zhang Weiyi, Liu Zhongchi, Kang Chunying
Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China.
Hubei Hongshan Laboratory, Wuhan, 430070, China.
New Phytol. 2023 Feb;237(4):1391-1404. doi: 10.1111/nph.18589. Epub 2022 Nov 29.
Leaves are strikingly diverse in terms of shapes and complexity. The wild and cultivated strawberry plants mostly develop trifoliate compound leaves, yet the underlying genetic basis remains unclear in this important fruit crop in Rosaceae. Here, we identified two EMS mutants designated simple leaf1 (sl1-1 and sl1-2) and one natural simple-leafed mutant monophylla in Fragaria vesca. Their causative mutations all reside in SL1 (FvH4_7g28640) causing premature stop codon at different positions in sl1-1 and sl1-2 and an eight-nucleotide insertion (GTTCATCA) in monophylla. SL1 encodes a transcription regulator with the conserved DNA-binding domain GT-1 and the catalytic domain of protein kinases PKc. Expression of SL1pro::SL1 in sl1-1 completely restored compound leaf formation. The 35S::SL1 lines developed palmate-like leaves with four or five leaflets at a low penetrance. However, overexpressing the truncated SL1 caused no phenotypes, probably due to the disruption of homodimerization. SL1 is preferentially expressed at the tips of leaflets and serrations. Moreover, SL1 is closely associated with the auxin pathway and works synergistically with FveLFYa in leaf morphogenesis. Overall, our work uncovered a new type of transcription regulator that promotes compound leaf formation in the woodland strawberry and shed new lights on the diversity of leaf complexity control.
叶片在形状和复杂性方面具有显著的多样性。野生和栽培的草莓植株大多发育出三出复叶,但在蔷薇科这种重要的水果作物中,其潜在的遗传基础仍不清楚。在这里,我们在野草莓(Fragaria vesca)中鉴定出两个EMS突变体,命名为单叶1(sl1-1和sl1-2)以及一个天然的单叶突变体单叶(monophylla)。它们的致病突变均位于SL1(FvH4_7g28640)中,导致sl1-1和sl1-2在不同位置出现提前终止密码子,而单叶突变体中出现了一个八核苷酸插入(GTTCATCA)。SL1编码一种转录调节因子,具有保守的DNA结合结构域GT-1和蛋白激酶PKc的催化结构域。在sl1-1中表达SL1pro::SL1完全恢复了复叶的形成。35S::SL1株系以低 penetrance 发育出具有四或五片小叶的掌状叶。然而,过表达截短的SL1没有导致表型,可能是由于同源二聚化的破坏。SL1在小叶尖端和锯齿处优先表达。此外,SL1与生长素途径密切相关,并在叶片形态发生中与FveLFYa协同作用。总体而言,我们的工作发现了一种新型的转录调节因子,它促进了森林草莓中复叶的形成,并为叶片复杂性控制的多样性提供了新的线索。